B.TECH/CSE/6TH SEM/MATH 3221/2021

COMPUTATIONAL MATHEMATICS (MATH 3221)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choose the correct alternative for the following:				$0 \times 1 = 10$
	(i)	The generating function (a) $\frac{1}{1-x^3}$	n of the sequence {1, 3, 9 (b) $\frac{1}{1+x^3}$	(c) $\frac{1}{1+3x}$ (c) $\frac{1}{1+3x}$	} is $(d)\frac{1}{1-3x}$
	(ii)	The third harmonic nut (a) 1	mber $H_3 =$ (b) $\frac{1}{2}$	(c) $\frac{3}{2}$	$(d)\frac{11}{6}$
	(iii)	The second Bernoulli n (a) $\frac{1}{6}$	umber $B_2 =$ (b) $\frac{1}{2}$	(c) $-\frac{1}{2}$	(d) 0
	(iv)	Which of the following (a) 235	is a Fibonacci number? (b) 144	(c) 133	(d) 35
	(v)	$\varphi(32) =$ (a) 12	(b) 8	(c) 31	(d)16
	(vi)	$\left[\left\lfloor \sqrt[4]{3} \right] + \sqrt[4]{3}\right] =$ (a) 1	(b) 2	(c) 3	(d) 4
	(vii)	The remainder in the d (a) 1	ivision of 10 ¹⁰⁰ – 1 by 9 (b) 9	9 is (c) 0	(d)10
	(viii)	$\Delta(x^{\underline{10}})$ is a polynomial (a) 10	in <i>x</i> whose degree is (b) 9	(c) 11	(d) 8
	(ix)	The generating function (a) $\frac{1}{1-3x}$	n of the sequence $\{1, -3\}$ (b) $\frac{1}{(1+3x)^2}$	$(-1)^{n}$ (c) $\frac{1}{1+3x}$	^{<i>n</i>} , } is (d) $\frac{1}{1+x^3}$
	(x)	Which one of the follov (a) 89	ving is a Fibonacci numb (b) 235	er? (c) 146	(d)36.

MATH 3221

B.TECH/CSE/6TH SEM/MATH 3221/2021

Group – B

- 2. (a) Express $S_n = \sum_{k=1}^n k 2^k$ as a function of *n*. Show your work in detail.
 - (b) Consider the Tower of Hanoi problem. Let T_n denote the maximum number of moves that will transfer n disks from one peg to another, if only one disk is moved at a time, and a larger one is never moved onto a smaller one. Prove that $T_n \ge 2T_{n-1} + 1$ for n > 0.

$$6 + 6 = 12$$

7 + 5 = 12

3. (a) Prove that $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(n+2)}{6}$ by the perturbation method.

(b) Prove that
$$\frac{x^{\underline{m}}}{(x-n)^{\underline{m}}} = \frac{x^{\underline{n}}}{(x-m)^{\underline{n}}}$$

Group - C

4. (a) Prove the recurrence relation for the Sterling numbers of the first kind, $\begin{bmatrix} n \\ k \end{bmatrix}$: $\begin{bmatrix} n \\ k \end{bmatrix} = (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}$ where n, k are positive integers and $2 \le k \le n$.

- (b) The generating function of the Bernoulli numbers B_n is $\frac{x}{e^{x}-1} = \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n$. Use this to prove that for any integer $k \ge 1$, the following recurrence relation hold true. $\frac{B_k}{1!k!} + \frac{B_{k-1}}{2!(k-1)!} + \frac{B_{k-2}}{3!(k-2)!} + \frac{B_{k-3}}{4!(k-3)!} + \dots + \frac{B_{k-2}}{n!1!} + \frac{1}{(n+1)!} = 0.$ 6 + 6 = 12
- 5. (a) Let F_k denote the Fibonacci numbers. Let $m \ge 2$ be a fixed integer. Prove that $F_{m+n} = F_{m-1}F_n + F_mF_{n+1}$ for all integers $n \ge 1$, by induction on n.

(b) Let
$$r, k$$
 be positive integers and $r > k$. Prove that
 $(r-k) \binom{r}{k} = r\binom{r-1}{k}$
 $6+6=12$

Group – D

- 6. (a) Show that $18! + 3^{310} + 4^{416} + 20! \equiv 1 \pmod{19}$. Show your calculations and state every theorem that you use.
 - (b) (i) Let *n* be a positive integer. Prove that if $(n 1)! \equiv -1 \pmod{n}$, then *n* must be a prime number.
 - (ii) Let a, b, m, k be positive integers. If $a \equiv b \pmod{m}$, prove that $a^k \equiv b^k \pmod{m}$.

$$6 + (3 + 3) = 12$$

B.TECH/CSE/6TH SEM/MATH 3221/2021

- 7. (a) Given that *a* has order 3 modulo *p*, where *p* is an odd prime, show that $(a + 1)^6 \equiv 1 \pmod{p}$.
 - (b) Let n, m be positive integers such that n > m. Prove the Dirichlet Box Principle: If n objects are put into m boxes, then some box must contain $\geq \left[\frac{n}{m}\right]$.

6 + 6 = 12

Group – E

- 8. (a) Solve the recurrence relation $a_{n+1} a_n = 3n^2 n; n \ge 0, a_0 = 3$.
 - (b) Find a formula for the general term F_n of the Fibonacci sequence 0, 1, 1, 2, 3, 5, 8, 13,

6 + 6 = 12

- 9. (a) Solve the recurrence relation by using the method of generating function $a_{n+1} + 4a_n + 4a_{n-1} = n-1$; $n \ge 1$, given $a_0 = 0 \& a_1 = 1$.
 - (b) Use mathematical induction to prove that $5^{2n} 2^{5n}$ is divisible by 7.

6 + 6 = 12

Department & Section	Submission Link
CSE	https://classroom.google.com/c/MzExNTQ4NTg0MTY3/a/MzQ0MTcyNTUzNjY5/details