NUMERICAL & STATISTICAL METHODS (MATH 2002)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choos	aboose the correct alternative for the following: $10 \times 1 = 10$				
	(i)	$\Delta\left(\frac{1}{x}\right) \text{ is equal to}$ (a) $\frac{1}{x(x+h)}$	(b) $\frac{1}{(x+h)}$	(c) $-\frac{h}{(x+h)}$	(d) $-\frac{h}{x(x+h)}$	
	(ii)	A matrix can be fact principal minors of th (a) Singular (c) zero	torized into lower and ne matrix are	d upper triangular m (b) non-singular (d) none of these.		
	(iii)	If $f(x)$ is defined at (a) (a) exactly $(n + 1)$ (c) exactly $(n - 1)$	n + 1) distinct points t	hen degree of Lagrang (b) at most <i>n</i> (d) 0.	ian function is	
	(iv)	One of the root of x^2 (a) 1 & 2	+5x - 3 = 0 lies in be (b) 0 & 1	tween (c) 2 & 3	(d) 4 & 5.	
	(v)		ariable. Then which of ne random variable <i>X</i> .	the combination of <i>E</i> ((X) and $E(X^2)$	
		(a) 0 & 1	(b) 2 & 3	(c) $\frac{1}{2} \& \frac{1}{3}$	(d) 2 & 5.	
	(vi)		has the following proba- $f(x) = \begin{cases} \frac{1}{4}, & -2 < x < \\ 0, & elesewhee \end{cases}$		n:	
		then $P(2X + 3 > 5)$ (a) $\frac{1}{2}$	(b) $\frac{1}{3}$	(c) $\frac{1}{4}$	(d) 1.	
	(vii)	The mean of a uniform (a) $\frac{a-b}{2}$	m distribution with par (b) $\frac{b-a}{2}$	cameters <i>a</i> and <i>b</i> is $(c)\frac{b^2-a^2}{2}$	(d) $\frac{b+a}{2}$.	
MA	TH 200)2	1			

(viii) A fair coin is tossed 10 times. What is the probability that **ONLY** the first two tosses will yield heads.

(a)
$$\left(\frac{1}{2}\right)^{10}$$
 (b) $\left(\frac{1}{2}\right)^2$ (c) $10_{C_2} \left(\frac{1}{2}\right)^2$ (d) $10_{C_2} \left(\frac{1}{2}\right)^{10}$

- (ix) What is the probability that a leap year selected at random, will contain 53 saturdays (a) $\frac{1}{7}$ (b) $\frac{4}{7}$ (c) $\frac{3}{7}$ (d) $\frac{2}{7}$.
 - If $b_{xy} = -0.4$ and $b_{xy} = -0.9$, the the correlation coefficient between *x* and *y*
 - (r_{xy}) is (a) 0.36 (b) -0.6 (c) 0.6 (d) -0.06.

Group – B

- 2. (a) Using Newton-Raphson method, obtain iteration formula for the reciprocal of a number N and hence find the value of $\frac{1}{22}$, correct upto four decimal places.
 - (b) Using Gauss-Seidel method, find the solution of the following system of linear equations correct to one decimal places.

$$5x - 2y + z = 4$$

$$x + 6y - 2z = -1$$

$$3x + y + 5z = 13$$

3. (a) Solve the following system of linear equations by Gauss Elimination method.

$$x + 2y + 3z = 10$$

$$x + 3y - 2z = 7$$

$$2x - y + z = 5$$

(b) Find the smallest positive root of the equation $xe^x - 1 = 0$, correct to 2 significant figures using bisection method.

6 + 6 = 12

6 + 6 = 12

Group – C

4. (a) Compute f(0.29) by Newton's backward difference interpolation formula from the following table

x	0.20	0.22	0.24	0.26	0.28	0.30
f(x)	1.6596	1.6698	1.6804	1.6912	1.7024	1.7139

(b) Find the solution of the differential equation $\frac{dy}{dx} = y^2 + xy$, y(1) = 1 for x = 1.1 taking h = 0.1 using Runge-Kutta method of fourth order.

7 + 5 = 12

5. (a) Find the equation of the cubic curve that passes through the points (-1, -8), (0, 3), (2, 1) and (3, 2) using Lagrange's interpolation formula.

MATH 2002

(x)

(b) Evaluate $\int_0^{\frac{\pi}{2}} \sqrt{1 - 0.612 \sin^2 x} \, dx$ using trapezoidal rule with 6 sub-intervals. **6 + 6 = 12**

Group – D

- 6. (a) Suppose that there is a chance for newly constructed house to collapse whether the design is faulty or not. The chance that the design is faulty is 10%. The chance that the house collapse if the design is faulty is 95% and otherwise it is 45%. It is seen that the house collapsed. What is the probability that it is due to faulty design.
 - (b) Two newspapers, *X* and *Y* are published in a certain city. It is estimated from a survey that 16% read *X*, 14% read *Y* and 5% read both newspapers. Find the probabilities that a randomly selected person
 - (i) does not read any newspaper, and
 - (ii) reads only *Y*.

6 + 6 = 12

7. (a) The probability density function of a continuous random variable *X* is given by

$$f(x) = \begin{cases} \frac{x}{2}, & 0 < x \le 1\\ \frac{1}{2}, & 1 < x \le 2\\ \frac{3-x}{2}, & 2 < x \le 3 \end{cases}$$

Find the mean and variance of *X*.

(b) The distribution function F(x) of the random variable X is defined as follows:

$$F(x) = \begin{cases} A, & -\infty < x < -1 \\ B, & -1 \le x < 0 \\ C, & 0 \le x < 2 \\ D, & 2 \le x < \infty \end{cases}$$

where *A*, *B*, *C* and *D* are constants. Determine values of *A*, *B*, *C* and *D*, it being given that $P(X = 0) = \frac{1}{6}$ and $P(X > 1) = \frac{2}{3}$.

6 + 6 = 12

Group – E

- 8. (a) A passenger arrives at a bus stop at 9 *am* knowing that the bus will arrive at some time uniformly distributed between 9 *am* and 9.30 *am*.
 - (i) Find the probability that he will have to wait longer that 10 *mins*.
 - (ii) If at 9.15 *am* the bus has not yet arrived, find the probability that he will have to wait at least 10 additional minutes.
 - (b) The distribution of the number of road accidents per day in a city is Poisson with mean 4. Find the approximate number of days out of 100 days where there will be

- (i) no accident,
- (ii) at least 2 accidents,
- (iii) at most 3 accidents.

6 + 6 = 12

9. (a) Calculate the median and mode of the following frequency distribution:

				0		
Marks:	10-19	20-29	30-39	40-49	50-59	60-69
Frequency:	8	11	15	17	17	7

(b) The following data gives the hardness (x) and tensile strength (y) for some specimens of a material, in certain units. Find the correlation coefficient and the regression line of x on y.

x	23.3	17.5	17.8	20.7	18.1	20.9	22.9
y	4.2	3.8	4.6	3.2	5.2	4.7	4.4

6 + 6 = 12

Note:

- 1. Students having backlog in MATH2002 and if not joined in any Google classroom for this paper code yet, are advised to follow both Step-I and Step-II as mentioned below in order to submit the answer-scripts properly.
- 2. Students who have already joined any Google Classroom for MATH2002 can directly go to Step-II as mentioned below.

Department & Section	Steps	Link
All (Backlog)	Step-I : Join Google Classroom using institutional email account	https://classroom.google.com/c/Mzc0MjcyMTQ5NjUz?cjc=ccguwqp
	Step-II: Submit the answer script.	https://classroom.google.com/c/Mzc0MjcyMTQ5NjUz/a/Mzc0MjcyMTQ5Njc1/details