B.TECH/CSE/4™ SEM/MATH 2201 (BACKLOG)/2021

NUMBER THEORY & ALGEBRAIC STRUCTURES
(MATH 2201)

Time Allotted : 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and

any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A
(Multiple Choice Type Questions)
1. Choose the correct alternative for the following: 10x1=10

(i) If the cyclic group G contains 12 distinct elements then the number of possible

generators of the group is

(@)1 (b) 2 (c)3 (d) 4
(ii) In the additive group (R +), where R denotes the set of reals, (2.5)%=

(@)1 (b)O (c)-1 (d) 2.5.
(iii)  In the additive group Zs={[0], [1], [2], [3], [4], [5]} under addition, the order of

the element [4] is

(@o (b) 2 ()3 (d) 6.
(iv)  The number of generators of an infinite cyclic group is

(a)1 (b) 2 (c)o (d) infinite.
(v) Index of a subgroup is 5 and its order is 3. The order of the group is

(a) 8 (b) 10 (c) 15 (d) none.
(vi)  In the field Z11= {[0], [1], [2],- [10]}, under addition and multiplication modulo

11, the multiplicative inverse of [8] is

(a) [3] (b) [9] (c) [7] (d) [5]
(vii) A divisor of zero in Zo={[0], [1], ..., [8]} under addition and multiplication modulo

9is

(a) [3] (b) [7] (c) [2] (d) [5]
(viii) The remainder in the division of 1!+2!+3!+....+100! by 5 is

(a)1 (b) 2 (c)3 (d) 4.
(ix) In a lattice (L, A, v), the dual of the statement (anb)va=an(bva)is

(a) (anb) rna=an(bnaa) (b) (avb)va=av(bva)

(c) (anb)va=av(bva) (d) none of these.
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(x)
2. (a)
(b)
3. ()
(b)
4. (a)
(b)
(c)
5. (a)
(b)
6. (a)

30! is congruent modulo 31 to
(a) 20 (b) 15 (c)10 (d) 30.

Group - B

Solve the following set of simultaneous congruences by using the Chinese
Remainder Theorem

X =5(mod11)

X =14(mod 29)

X =15(mod31)

State the definition of a primitive root of a prime number p. Find all the
primitive roots of p = 11 and p = 17. Show your calculations in detail.
6+6=12

State the definition of a partially ordered set. Let §={1,2,3,4,8,9,16,27} and let
‘a/b’ mean that a is a divisor of b. Check that (§,/) is a partially ordered set. Draw
its Hasse diagram.

Let N be the set of all positive integers. A and vare defined as a b= HCF of a
and b, av b=LCM of a and b. Prove that (N, A,v) is a lattice.
6+6=12

Group - C

Show that the set G ={a+b+/2}:a,b eQ}is a group with respect to addition, where
Qdenotes the set of rationals.

Either prove the following statements or give counter-examples:

(i) Every binary operation on a set consisting of a single element is both
commutative and associative.

(ii) Every commutative binary operation on a set having just two elements is
associative.

Prove that in a group G, for all a,b in G, the equation ax=b has a unique solution
in G.
4+(2+2)+4=12

Prove that a group is abelian if and only if (ab)1=a"1b-, for all a,b in G.

Prove that the number of even permutations on a finite set (containing at least
two elements) is equal to the number of odd permutations on it.
6+6=12

Group -D

State and prove Lagrange’s Theorem regarding the order of a subgroup of a
finite group.
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(b) If in a group G, a’=e and aba!=b? for all g,b in G, find the order of b.
6+6=12
7. (a) Prove that every group of prime order is cyclic.
(b) Prove that the intersection of any two normal subgroups of a group is a normal
subgroup. Is the same true for the union? Justify.
6+(4+2)=12
Group - E
8. (a) Let z[v/5]={a+bv5:a,beZz}. Prove that z[\/5]is a ring under the ordinary
addition and multiplication of real numbers.
(b) Prove that for every prime p,Z, the ring of integers modulo p, is a field. State
any theorem that you use.
6+6=12
9. (a) State the definitions of a ring homomorphism and a ring isomorphism. Prove
that (Z,+,x) is homomorphic to Z7 under addition and multiplication modulo 7
by defining an appropriate function from Z onto Z,and showing that it is a
homomorphism.
(b) Let R be a ring. The centre of R is the set {x e R:ax=xa}for all aeR. Prove that
the centre of a ring is a subring.
6+6=12
Note:

1.  Students having backlog in MATH2201 (old syllabus) and if not joined in any Google classroom
for this paper code yet, are advised to follow both Step-I and Step-II as mentioned below in order
to submit the answer-scripts properly.

2.  Students who have already joined any Google Classroom for MATH2201 (old syllabus) can
directly go to Step-II as mentioned below.

Department Steps Link
&
Section
Step-1: Join
Google
Classroom using https://classroom.google.com/c/Mzc10TE3NDg30DI0?cjc=eebzmyp

CSE- A,B,C institutional
(Backlog) email account

Step-II: Submit
the answer https://classroom.google.com/c/Mzc10TE3NDg30DI0/a/Mzc10TE4MjU1NDES /details

script.
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