B.TECH/CSE/4TH SEM/MATH 2201 (BACKLOG)/2021

NUMBER THEORY & ALGEBRAIC STRUCTURES (MATH 2201)

Time Allotted : 3 hrs

1.

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

Choos	10 × 1 = 10			
(i)	If the cyclic group <i>G</i> contains 12 distinct elements then the number of pos- generators of the group is			
	(a) 1	(b) 2	(c) 3	(d) 4
(ii)	In the additive group ((a) 1	R,+), where R denotes th (b) 0	e set of reals, (2.5) ⁰ = (c) -1	(d) 2.5.
(iii)	In the additive group Z_6 ={[0], [1], [2], [3], [4], [5]} under addition, the order o the element [4] is			, the order of
	(a) 0	(b) 2	(c) 3	(d) 6.
(iv)	The number of generat (a) 1	tors of an infinite cyclic § (b) 2	group is (c) 0	(d) infinite.
(v)	Index of a subgroup is (a) 8	5 and its order is 3. The (b) 10	order of the group is (c) 15	(d) none.
(vi)	In the field Z_{11} = {[0], [1], [2],, [10]}, under addition and multiplication modul 11, the multiplicative inverse of [8] is			ation modulo
	(a) [3]	(b) [9]	(c) [7]	(d) [5]
(vii)	A divisor of zero in Z_9 ={[0], [1],, [8]} under addition and multiplication modul 9 is			ation modulo
	(a) [3]	(b) [7]	(c) [2]	(d) [5]
(viii)	The remainder in the division of 1!+2!+3!++100! by 5 is(a) 1(b) 2(c) 3(d) 4.			
(ix)	In a lattice (L, \land , \lor), th (a) (a \land b) \land a=a \land (b \land a (c) (a \land b) \lor a=a \lor (b \lor a)	e dual of the statement ($(a \land b) \lor a = a \land (b \lor a)$ is (b) $(a \lor b) \lor a = a \lor (b)$ (d) none of these.	5 ∨a)

MATH 2201

B.TECH/CSE/4TH SEM/MATH 2201 (BACKLOG)/2021

(x) 30! is congruent modulo 31 to (a) 20 (b) 15 (c) 10 (d) 30.

Group - B

2. (a) Solve the following set of simultaneous congruences by using the Chinese Remainder Theorem

 $x \equiv 5 \pmod{11}$ $x \equiv 14 \pmod{29}$ $x \equiv 15 \pmod{31}$

(b) State the definition of a primitive root of a prime number p. Find all the primitive roots of p = 11 and p = 17. Show your calculations in detail.

6 + 6 = 12

- 3. (a) State the definition of a partially ordered set. Let *S*={1,2,3,4,8,9,16,27} and let *'a/b'* mean that *a* is a divisor of b. Check that (*S*,/) is a partially ordered set. Draw its Hasse diagram.
 - (b) Let N be the set of all positive integers. \land and \lor are defined as $a \land b$ = HCF of a and $b, a \lor b$ =LCM of a and b. Prove that (N, \land,\lor) is a lattice.

6 + 6 = 12

Group - C

- 4. (a) Show that the set $G = \{a + b\sqrt{2}\}: a, b \in Q\}$ is a group with respect to addition, where Q denotes the set of rationals.
 - (b) Either prove the following statements or give counter-examples:
 - (i) Every binary operation on a set consisting of a single element is both commutative and associative.
 - (ii) Every commutative binary operation on a set having just two elements is associative.
 - (c) Prove that in a group *G*, for all *a*,*b* in *G*, the equation *ax=b* has a unique solution in *G*.

4 + (2 + 2) + 4 = 12

- 5. (a) Prove that a group is abelian if and only if $(ab)^{-1}=a^{-1}b^{-1}$, for all a,b in G.
 - (b) Prove that the number of even permutations on a finite set (containing at least two elements) is equal to the number of odd permutations on it.

6 + 6 = 12

Group – D

6. (a) State and prove Lagrange's Theorem regarding the order of a subgroup of a finite group.

MATH 2201

B.TECH/CSE/4TH SEM/MATH 2201 (BACKLOG)/2021

(b) If in a group *G*, $a^5 = e$ and $aba^{-1} = b^2$ for all *a*,*b* in *G*, find the order of *b*.

6 + 6 = 12

- 7. (a) Prove that every group of prime order is cyclic.
 - (b) Prove that the intersection of any two normal subgroups of a group is a normal subgroup. Is the same true for the union? Justify.

6 + (4 + 2) = 12

Group – E

- 8. (a) Let $Z[\sqrt{5}] = \{a + b\sqrt{5} : a, b \in Z\}$. Prove that $Z[\sqrt{5}]$ is a ring under the ordinary addition and multiplication of real numbers.
 - (b) Prove that for every prime p, Z_p , the ring of integers modulo p, is a field. State any theorem that you use.

6 + 6 = 12

- 9. (a) State the definitions of a ring homomorphism and a ring isomorphism. Prove that $(Z,+,\times)$ is homomorphic to Z_7 under addition and multiplication modulo 7 by defining an appropriate function from Z onto Z_7 and showing that it is a homomorphism.
 - (b) Let *R* be a ring. The centre of *R* is the set $\{x \in R : ax = xa\}$ for all $a \in R$. Prove that the centre of a ring is a subring.

6 + 6 = 12

Note:

- 1. Students having backlog in MATH2201 (old syllabus) and if not joined in any Google classroom for this paper code yet, are advised to follow both Step-I and Step-II as mentioned below in order to submit the answer-scripts properly.
- 2. Students who have already joined any Google Classroom for MATH2201 (old syllabus) can directly go to Step-II as mentioned below.

Department &	Steps	Link	
Section			
	Step-I : Join		
	Google		
	Classroom using	https://classroom.google.com/c/Mzc10TE3NDg30DI0?cjc=eebzmyp	
CSE- A,B,C	institutional		
(Backlog)	email account		
	Step-II: Submit		
	the answer	https://classroom.google.com/c/Mzc10TE3NDg30DI0/a/Mzc10TE4MjU1NDE5/details	
	script.		