B.TECH/ME/6TH SEM/MECH 3253(BACKLOG)/2021

ADVANCED FLUID MECHANICS (MECH 3253)

Time Allotted : 3 hrs

1.

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

Choos	Choose the correct alternative for the following:				
(i)	The velocity pote (a) parallel (c) inclined at 60	ential and stream fund °	ction are mutually (b) perpend (d) inclined		
(ii)	 In laminar flow between two fixed parallel plates, the shear stress is (a) constant across the passage (b) maximum at the boundary and zero at the centre (c) maximum at centre and zero at the boundary (d) zero all through the passage. 				
(iii)	For a plane Poise plates is (a) linear	euille flow, the natur (b) parabolic	e of shear stress distr (c) hyperbolic		
(iv)	(a) circulation	f Vorticity is equal to ultiplied by area	(b) circulation per unit area		
(v)	Pressure drag streamlined body (a) less, more (c) less, less		ce of flow separatio (b) more, le (d) more, m	SS	
(vi)	The tangential velocity component of ideal fluid flow on the surface of a cylinderis given by(a) U sinθ(b) 2U sinθ(c) 3U sinθ(d) 4U sinθ.			surface of a cylinder (d) 4U sinθ.	
(vii)	-	ibility correction fac w (fill in the blank). (b) high	tor results from (c) negative	Mach number (d) infinite.	

B.TECH/ME/6TH SEM/MECH 3253(BACKLOG)/2021

(viii) Mach angle in a Mach cone is

 $(a) Sin^{-1}(M)$

(d)
$$\sin^{-1}(\frac{2}{M})$$

(ix)	In a compressible flow the stagnation temperature is always			
	(a) lower than static temperature	(b) higher than static temperature		
	(c) equal to the static temperature	(d) both (a) and (c)		

 $(c) Sin^{-1}(2M)$

(x) Mass flow rate through a duct is maximum when the Mach number at the throat is (a) 5 (b) 1 (c) 0 (d) ∞ .

Group – B

- 2. (a) The velocity components in a two-dimensional flow are $u = \frac{y^3}{3} + 2x - x^2 y$ and $v = xy^2 - 2y - \frac{x^3}{3}$.
 - (i) Prove that it is a case of possible steady incompressible flow.
 - (ii) Show that the flow is irrotational.
 - (b) What is the difference between free and forced vortex?

(b) $\sin^{-1}(\frac{1}{M})$

(4+4)+4=12

- 3. (a) A point P (3, 1) is situated in the flow field of a doublet of strength 6 m²/s. calculate the velocity at this point and also the value of the stream function.
 - (b) What do you mean by superimposed flow? Explain how the contour of a half body is obtained.

6 + (2 + 4) = 12

Group – C

- 4. (a) Show that in case of Couette flow, the shear stress at the horizontal mid-plane of the channel is independent of the pressure gradient imposed on the flow.
 - (b) Water at 15°C flows between parallel plates with gap width b = 2.5 mm. The upper plate moves with speed U=0.25 m/s in the positive x direction. The pressure gradient is $\frac{\partial p}{\partial x} = -175 Pa/m$. Locate the point of maximum velocity and determine its magnitude (let y=0 at the bottom plate).

6 + (4 + 2) = 12

- 5. (a) State the Prandtl's boundary layer equations and show that the velocity profile for a laminar flow past a flat plate has an infinite radius of curvature on the surface of the plate.
 - (b) For finding the velocity distribution in case of flow between two concentric rotating cylinders, write down the assumptions consider with justification.

9 + 3 = 12

MECH 3253

B.TECH/ME/6TH SEM/MECH 3253(BACKLOG)/2021

Group – D

- 6. (a) How the compressibility correction factor affects the accuracy of velocity calculation using a pitot-static tube?
 - (b) Explain: (i) supersonic diffuser is convergent shaped duct, and (ii) supersonic nozzle is divergent shaped duct.

6 + (3 + 3) = 12

- 7. (a) An airplane is capable of flying with a Mach number of 0.8. What can be the maximum speed of the airplane (i) at the sea level where temperature is 27° C, and (ii) at high altitude where the temperature is -43° C? Given, R = 287J/kgK and γ = 1.4 for air.
 - (b) How the stagnation temperature (T_0) is related to the static temperature (T) in isentropic compressible flow?

6 + 6 = 12

Group – E

- 8. (a) A metallic ball 2 mm diameter and relative density 12 is dropped into fluid of specific gravity 0.95 and viscosity 1.5 kg/ms. Find out the drag force exerted by fluid on metallic ball and calculate the terminal velocity of the ball.
 - (b) Derive the expression for lift for flow past a cylinder with circulation.

6 + 6 = 12

- 9. (a) Explain the terms: (i) Magnus effect (ii) Drag force
 - (b) A jet plane which weighs 29430 N and has a wing area of 20 m^2 flies at a velocity of 250 km/hr. When the engine delivers 7357.5 kW. 65% of the power is used to overcome the drag resistance of the wing. Calculate the co-efficient of lift and co-efficient of drag for the wing. Take $\rho_{air} = 1.21 \text{kg/m}^3$.

6 + 6 = 12

Department & Section	Submission Link	
ME	https://forms.gle/xppWGHLCXJ2Xhfv77	