B.TECH/ME/4TH SEM/MATH 2001 (BACKLOG)/2021

MATHEMATICAL METHODS (MATH 2001)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choos	se the correct altern	$10 \times 1 = 10$		
	(i)	The value of $\oint_C \frac{dz}{z-4}$ (a) $2\pi i$	where <i>C</i> is the circle z (b) 0	x - 1 = 2 is (c) πi	(d) 4 <i>πi</i>
	(ii)	Which of the follow (a) $\frac{1}{z}$	wing functions has an (b) $\frac{1}{z} + \frac{1}{z^2}$	essential singularity (c) e ^{z²}	at $z = 0$ (d) $e^{\frac{1}{z^3}}$
	(iii)	The period of cos (a) 2π	2πx is (b) 1	(c) 2	(d) none of these
	(iv)	(a) $\frac{s}{(a^2+s^2)}$	ransform of $f(x) = e^{-ax}$, (b) $\frac{a}{(a^2+s^2)}$		(d) none of these
	(v)	$\int_{-1}^{1} P_0(x) dx =$ (a) 4	(b) 1	(c) 2	(d) 0
	(vi) For the differential equation $x^2(1-x)y^2 + xy^2 + y = 0$ (a) $x = 1$ is an ordinary point (b) $x = 1$ is a regular (c) $x = 1$ is an irregular singular point (d) $x = 0$ is an ord				
	(vii)	Which of the follow (a) $\sin(t^2)$	wing is an odd function (b) $t^2 - t$	1 of <i>t</i> (c) $t^3 + t^2$	(d) <i>t</i>
	(viii)	P.I. of $\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial^2 z}{\partial x \partial y} +$ (a) sin x	$\frac{\partial^2 z}{\partial y^2} = \sin x \text{ is}$ (b) $-\sin x$		(d)
			$(D) - S \prod x$	(C) $\cos x$	(d) $-\cos x$

B.TECH/ME/4TH SEM/MATH 2001 (BACKLOG)/2021

(ix) Complete solution of
$$pq + p + q = 0$$
 is
(a) $ax - \frac{a}{1+a}y + c$ (b) $ax - \frac{a}{1+a}x + c$
(c) $ax - \frac{a^2}{1+a}y + c$ (d) $ay - \frac{a}{1+a}y + c$
(x) The value of $\lim_{z \to i} \frac{iz+1}{z-i}$ is
(a) 1 (b) -1 (c) i (d) $-i$.

Group – B

2. (a) Apply residue theorem to evaluate $\int_0^{2\pi} \frac{\cos 3\theta}{5 - 4\cos \theta} d\theta$.

(b) Evaluate
$$\oint_C \frac{z^2 - z + 1}{z - 1} dz$$
, where *C* is the circle (i) $|z| = 2$ and (ii) $|z| = \frac{1}{2}$.
6 + 6 = 12

- 3. (a) Find the imaginary part v(x, y) of the analytic function f(z) = u(x, y) + iv(x, y)Where $u(x, y) = e^{2x}(x \cos 2y - y \sin 2y)$
 - (b) For the function $f(z) = (z + \overline{z})(z \overline{z}).\overline{z}$, determine the points where the Cauchy-Riemann equations are satisfied.
 - (c) Check if the function $f(z) = e^z$ satisfies Cauchy-Riemann equation.

6 + 4 + 2 = 12

Group - C

4. (a) Obtain the Fourier Series for the function f(x) defined by

 $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, -\pi \le x \le 0\\ 1 - \frac{2x}{\pi}, 0 \le x \le \pi \end{cases} \text{ and hence evaluate } 1 + \frac{1}{3^2} + \frac{1}{5^2} \dots \infty.$

(b) Using Parseval's identity for the following function $f(x) = \begin{cases} -x, -2 \le x \le 0 \\ x, 0 \le x \le 2 \end{cases}$ prove that $\sum \frac{1}{n^4} = \frac{\pi^4}{96}$, n = 1, 3, 5....

6 + 6 = 12

5. (a) Evaluate $F^{-1}[e^{-a|s|}], a > 0.$

(b) Find the Fourier sine and cosine transform of f(x) defined by $f(x) = xe^{-ax}$, a > 0. 6 + 6 = 12

Group - D

6. (a) Find the series solution of the differential equation $(1 + x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - xy = 0$

MATH 2001

B.TECH/ME/4TH SEM/MATH 2001 (BACKLOG)/2021

about the point x = 0.

(b) Express $J_4(x)$ in terms of $J_0(x)$ and $J_1(x)$.

7 + 5 = 12

- 7. (a) Solve the equation $xy'' + 3y' + (1+x)y = 1 + x^2$, y(0) = 1, y(4) = 0 at x = 1, 2, 3.
 - (b) Express $f(x) = 4x^3 + 6x^2 + 7x + 2$ in terms of Legendre polynomials.

7 + 5 = 12

6 + 6 = 12

Group – E

8. (a) Derive the partial differential equation (by eliminating the arbitrary constants) from the relation $f(x^2 + y^2, z - xy) = 0$

(b) Solve
$$x^2(y-z)p + y^2(z-x)q = z^2(x-y)$$
.

9. (a) Find the general solution of the following partial differential equation $\frac{\partial^2 z}{\partial x^2} - 7 \frac{\partial^2 z}{\partial x \partial y} + 12 \frac{\partial^2 z}{\partial y^2} = e^{x-y}$

(b) Solve the heat equation given by $\frac{\partial u}{\partial t} = \frac{1}{h^2} \frac{\partial^2 u}{\partial x^2}$ Given that $u(0, t) = 0, u(l, t) = 0, u(x, 0) = \sin \frac{\pi x}{t}$.

By the method of separation of variables.

5 + 7 = 12

Note:

1. Students having backlog in MATH2001 (old syllabus) and if not joined in any Google classroom for this paper code yet, are advised to follow both Step-I and Step-II as mentioned below in order to submit the answer-scripts properly.

2. Students who have already joined any Google Classroom for MATH2001 (old syllabus) can directly go to Step-II as mentioned below.

Department & Section	Steps	Link
ME (Backlog)	Step-I : Join Google Classroom using institutional email account	https://classroom.google.com/c/Mzc10TA0MDI20DIx?cjc=cbfh6oj
	Step-II: Submit the answer script.	https://classroom.google.com/c/Mzc10TA0MDI20DIx/a/Mzc10TA10TYxNTIz/details