BIOREACTOR DESIGN AND ANALYSIS (BIOT 3203)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

 $10 \times 1 = 10$

- (i) For a high degree of agitation, which reactor is used?
 - (a) Stirred tank (b) Tubular reactor
 - (c) Longitudinal reactor (d) All of the mentioned
- (ii) In an ideal plug flow reactor at steady state
 - (a) there may be diffusion along the flow path.
 - (b) there must be lateral mixing of fluid.
 - (c) the composition of the reactant remains constant along a flow path.
 - (d) the fractional conversion of the reactant varies from point to point along a flow path.
- (iii) In an ideal mixed reactor at steady-state
 (a) the composition throughout the reactor remains same
 (b) the exit stream has the same composition as the fluid within the reactor
 (c) the space-time is equivalent to holding time for constant density system
 (d) all of the above.

(iv) The exit age distribution of fluid leaving a vessel is used

- (a) to study the reaction mechanism
- (b) to study the extent of non-ideal flow in the vessel
- (c) to know the reaction rate constants
- (d) to know the activation energies of a reaction.
- (v) For perfect mixed flow the dispersion number must be
 (a) zero
 (b) less than 2100
 (c) less than 2
 (d) infinity
- (vi) Which of the following types of tracer input signal can be used to study the extent of non-ideal flow?
 - (a) Periodical signal
 - (c) Pulse signal

- (b) Step signal
- (d) All of the above

- (vii) Rate of a chemical reaction is not influenced by the
 - (a) catalyst
 - (c) reactants concentration

- (b) temperature
- (d) number of molecules of reactants

- (viii) A catalyst
 - (a) decreases the activation energy
 - (b) alters the reaction mechanism
 - (c) increases the frequency of collisions of reacting species
 - (d) all of the above
- (ix) The rate constant of a reaction increases by
 - (a) increasing the concentration of reactants
 - (b) increasing the pressure
 - (c) increasing the temperature
 - (d) carrying out the reaction for a longer time.
- (x) Which of the following does not influence the rate of a reaction?
 - (a) Temperature
 - (b) Concentration of reactants
 - (c) Catalyst
 - (d) Number of molecules of reactants taking part in a reaction.

Group – B

2. (a) Pseudomonas Sp. has a mss doubling time of 2.4 hr when grown on acetate as the sole carbon source. This is the minimum doubling time corresponding to cells growing at μ_{max} . The saturation constant for acetate is 1.3 g/L and the yield coefficient is $Y_{X_{acetate}} = 0.46$ g cells/g acetate. For a chemostat operated on a feed

stream containing 38 g/L acetate caiculate the following:

- (i) Critical dilution rate.
- (ii) Substrate concentration when the dilution rate one half of the maximum.
- (iii) Cell concentration at that condition.
- (b) A strain of mold was grown in a batch culture on glucose and the following data were obtained.

Time, hr	0	9	16	23	30	34	36	40
Cell concentration, g/L	1.25	2.45	5.1	10.5	22	33	37.5	41
Glucose concentration, g/L	100	97	90.4	76.9	48.1	20.6	9.38	0.63

- (i) Calculate the maximum net specific growth rate.
- (ii) Calculate the apparent growth yield.
- (iii) What maximum cell concentration could one expect if 150 g of glucose were used with the same size inoculums?

$$(2+2+2) + (2+2+2) = 12$$

- 3. (a) A value of k_{La} = 30 hr⁻¹ has been determined for a fermentor at its maximum practical agitator rotational speed and with air being sparged at 0.5 L gas/L reactor volume- min. *E. coli* with a q₀₂ of 10 mmol/g dry weight-hr are to be cultured. The C_{CRIT} is 0.2 mg/L. The solubility of O₂ from air in the fermentor broth is 7.3 mg/L at 30°C.
 - (i) What maximum concentration of *E. coli* can be sustained in this bioreactor under aerobic condition?
 - (ii) What concentration could be maintained if pure O_2 was used in the bioreactor?
 - (b) What are the significances of Prandtl number and Dispersion number in bioreactor design?

(3+3) + (3+3) = 12

Group – C

- 4. (a) A liquid phase reaction $A+B \rightarrow Product$ is conducted in an isothermal batch reactor. The reaction is first order with respect to each reactant, with k_A = 0.025 Lmol⁻¹s⁻¹, C_{A0} = 0.50 mol/L and C_{B0} = 1.0 mol/L. Determine the time required for 75% conversion of A.
 - (b) For the second order reaction $A \rightarrow R$, starting with initial concentration of A, $C_{A0}= 1 \text{mol}/L$, we get 50% conversion after 1 hr in a batch reactor. What will be the conversion and concentration of A after 1 hr if $C_{A0}= 10 \text{ mol}/L$.

6 + 6 = 12

- 5. (a) Consider a gas phase, isothermal, zero order reaction $A \rightarrow 3B$. Initial concentration of A is 2 mol/L, there are 40% inerts in the feed. Specific rate constant is 0.1 mol/L.min and activation energy is 40 kJ/mol. Final conversion required is 80%. In case of flow reactors, the volumetric flow rate to be used is 2L/min. Calculate the following:
 - (i) Time required in a constant volume batch reactor?
 - (ii) Time required in a constant pressure batch reactor?
 - (iii) Volume required of a CSTR?
 - (b) What will be the required volume of a CSTR to achieve 90% conversion of a gas phase irreversible reaction $A + B \rightarrow C$, when the entering flow rate of a is 10 mol/min and entering concentration is equal for A and B. The entering concentration of A is 0.4 mol/dm³. k = 2 dm³/mol.min and T₀ = 500K.

(2+2+2)+6=12

Group – D

6. (a) The following RTD data were obtained for a reactor vessel by using a pulse tracer introduced at the inlet flow. Plot E curve.

t, min	0	5	10	15	20	25	30	35
C, tracer concentration, g/cm ³	0	3.0	5.0	5.0	4.0	2.0	1.0	0

(b) Assume a first order reaction is taking place in a reactor vessel, $A \rightarrow R$, $k = 0.05 \text{min}^{-1}$. Using the RTD data from the previous problem, calculate X_A from the segregated model.

t, min	0	5	10	15	20	25	30	35
C, tracer concentration, g/cm ³	0	3.0	5.0	5.0	4.0	2.0	1.0	0
							6+6:	= 12

- 7. (a) A tubular reactor of L= 3m and cross section of 25cm^2 is used to process a first order irreversible reaction A \rightarrow R with 98% conversion with a flow rate of 0.03 m³/s. Now a pulse tracer test is made and the following data were obtained: Mean residence time, $\bar{t} = 10 \text{sec}$, Variance, $\sigma^2 = 65 \text{ sec}^2$. What conversion can be expected from the reactor using
 - (b) What is Residence Time Distribution (RTD)? How RTD can be expressed? Explain with a proper graphical representation.

6 + (2 + 4) = 12

Group – E

8. (a) *Lactobaccilus casei* is propagated under essentially anaerobic conditions to provide a starter culture for manufacture of Swiss cheese. The culture produces lactic acid as by-product of energy metabolism. The system has following characteristics:

 $Y_{x/s} = 0.23 \text{ kg/kg}$, $K_s = 0.15 \text{ kg/m}^3$, $\mu_{max} = 0.35 \text{ h}^{-1}$ and $m_s = 0.135 \text{ kg/kg}$.h

A stirred fermentor is operated in fed batch mode at quasi steady state with a feed flow rate of 4 m^3 /h and feed substrate concentration of 80 kg/m³. After 6 h the liquid volume is 40 m³.

- (i) What was the initial culture volume?
- (ii) What is the concentration of substrate at quasi-steady state?
- (iii) What is the cell mass concentration at quasi-steady state?
- (b) Write short notes on Any two from the following topics:
 - (i) Membrane bioreactor
 - (ii) Photobioreactor
 - (iii) Surface and submerged fermentation

6 + (3 + 3) = 12

- 9. (a) What are the merits and demerits of immobilized cell system?
 - (b) Discuss the significance of diffusional limitations in immobilized cell sytem

6 + 6 = 12

Department & Section	Submission Link
BT	https://classroom.google.com/c/MzE1ODkxODA0OTA5/a/MzQzMjM3NzIwNzkw/details