2015

CHEMISTRY - 1

(CHEM 1001)

Time Alloted : 3 Hours

Full Marks : 70

Figures out of the right margin indicate full marks. Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group. Candidates are required to give answer in their own words as far as practicable

need ast-suot

(Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following : [10×1=10]
 - i) Internal energy change of a system in a process depends on the
 - (a) states (b) path
 - (c) intermediate steps (d) none of the above
 - ii) An engine can have 100% efficiency if the temperature of the sink is

(a)	273K	(b)	0K
(c)	298K	(d)	300K

iii) For a weak acid with α as its degree of dissociation, the value of dissociation constant is given by (C is the concentration of acid in moles/litre)

(a) $K_a = \alpha C$	(b) $K_a = \alpha^2 C$
(c) $K_a = \alpha C^2$	(d) $K_a = \alpha^2 C^2$

CHEM 1001

[Turn over]

iv)	Which one of the followinits density?	ng defects in the crystals lowers
	(a) F-centres	(b) Schottky defect
	(c) Frenkel defect	(d) Interstitial defect
V)	On increasing the tem increases because	perature, the rate of reaction
	(a) the activation energ	y of the reaction increases
		y of the reaction decreases
		reacting molecules increases
	(d) a large fraction of the	e molecules attain energy equal he threshold energy
vi)	Which ion has the great	test ionic mobility?
	(a) Na⁺	
	(c) Li⁺	
vii)	At 25°C, the standard assigned electrode pote	hydrogen electrode has been ntial
	(a) positive	(b) negative
	(c) zero	(d) no definite value
viii)	In India flash point of pe	etrol engine is
	(a) –35°C	(b) -44°C
Ch.	(c) –22.8°C	(d) –27°C
ix)	Polyethylene is	Sien - Highe MA TE
	(a) Random copolymer	(b) Alternate polymer
	(c) Homo polymer	(d) Crosslinked copolymer
	Chain growth polymer is	
	(a) PVC	(b) Nylon
	c) Bakelite	(d) None of these
	· · · · · · · · · · · · · · · · · · ·	

CHEM 1001

2

[Turn over]

GROUP - B

- 2. (a) Derive Clausius-Clapeyron equation and mention its applications.
 - (b) Explain the efficiency of Carnot Engine. Starting from the expression for the efficiency of a reversible Carnot Engine, find the concept of entropy.
 - (c) On passing monochromatic light through a 0.01 (M) solution in a cell of 1 cm thickness, the intensity of the transmitted light was reduced to 10%. Calculate the molar extinction coefficient? (3+2)+(1+3)+3 = 12
- 3. (a) Derive the expression for entropy change of an ideal gas as a function of volume and temperature.
 - (b) One mole of an ideal monoatomic gas is heated from 27°C to 227°C and volume expands from 10L to 100L. Calculate the change in molar entropy (Given $C_v = 3/2R$).
 - (c) Define Gibbs free energy and derive the Gibbs-Helmholtz equation.
 - (d) Show, using labeled drawings of the water molecule :
 - (i) symmetrical stretching
 - (ii) asymmetrical stretching 3+3+(1+3)+(1+1) = 12

GROUP - C

- 4. (a) Mention the hybridisation of the central Xe in XeF_6 and geometry of the molecule.
 - (b) Write a short note on metal excess defect.
 - (c) Explain how does a buffer solution work. Define pH of a solution. Calculate pH of 0.085(N) monobasic acid which dissociates 25%.

CHEM 1001

3

[Turn over]

- (d) Compare the Lewis basicity of 2,6-dimethyl-4-nitroaniline and 3,5-dimethyl-4-nitroaniline. Give justification for your answer. (1+1)+3+(2+2)+(1+2) = 12
- 5. (a) Arrange n-pentane, isopentane and neopentane according to their increasing order of boiling point and give justification.
 - (b) Distinguish between p-type and n-type semiconductors.
 - (c) Write the electronic configuration of dioxygen molecule and calculate the bond order. Find out the number of unpaired electrons in it.
 - (d) Explain degree of hydrolysis and hydrolysis constant.

(1+1)+3+(2+1)+(2+2) = 12

Group - D

- (a) Deduce the expression for the rate constant of a second order reaction where the initial concentration of the reactants are same and show that time for 50% conversion is inversely proportional to the initial concentration.
 - (b) When the values of the equivalent conductance of strong electrolytic solutions with varying concentrations of sodium acetate, sodium chloride and hydrochloric acid are plotted separately against √c, three intercepts with values 91, 127 and 426 respectively are obtained at 25°C. A 0.2M CH₃COOH in a cell having cell constant of 0.36 cm⁻¹ offered a resistance of 509Ω at 25°C. Calculate the degree of dissociation of CH₃COOH.
 - (c) Derive the Nernst equation for a Galvanic cell.

(2+2)+5+3 = 12

5

Cł

[Turn over]

Β.

- 7. (a) What are the assumptions of the collision theory of reaction rates?
 - (b) Explain the salient features of the conductometric titration graph for a precipitation titration, for example KCI vs AgNO₃
 - (c) The standard reduction potentials of the electrodes Fe³⁺, Fe²⁺; pt and Sn⁴⁺, Sn²⁺; pt at 25°C are respectively +0.77 and +0.15V. Depict the cell, write the cell reaction and calculate the equilibrium constant of the cell reaction.
 3+3+6 = 12

GROUP - E

- 8. (a) Explain glass transition temperature and melting temperature of a polymer.
 - (b) Differentiate between thermoplastic and thermosetting polymers.
 - (c) What is CNG? What is the critical concentration for the combustion of CNG? Mention the advantages of CNG over gasoline for use in internal combustion engine.

(2+2)+4+(1+1+2) = 12

- 9. (a) Write structure and uses of Natural rubber and PVC.
 - (b) Calculate the mass of air needed for complete combustion of 5kg. of coal sample containing 80% carbon,15% hydrogen and rest is oxygen. Consider air contains 23% oxygen by weight.
 - (c) Define cetane number.
 - (d) What is biodiesel? Give the reaction involved in the preparation of biodiesel. (2+2)+4+1+(2+1) = 12

CHEM 1001

5