B.TECH/IT/4TH SEM/MATH 2203 (BACKLOG)/2021

GRAPH THEORY AND ALGEBRAIC STRUCTURES (MATH 2203)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choose the correct alternative for the following:				$10 \times 1 = 10$
	(i)	A group contains 1 subgroup is	2 elements then	the possible number of	elements in a
		(a) 3	(b) 5	(c) 7	(d) 11.
	(ii)	Which of the followi (a) {1,-1,0,2}	ng set is closed un (b) {1,i}	der numerical multiplication (c) { 1, ω , ω^2 }	on (d) { <i>@</i> ,1}.
	(iii)	The number of elem (a) 5	ents in the symme (b) 20	tric group S ₅ is (c) 120	(d) 5 ⁵
	(iv)	Let G be a cyclic grou (a) x	up containing 10 e (b) x ⁻¹	lements with generator x. ((c) identity	Гhen x ¹⁰ is (d) x ⁹ .
	(v)	Which of the followi (a) (Z, +) ((Z and Q denote the	ng group is not cyo b) ({2n: n∈Z}, +) set of integers and	clic? (c) (Q,+) l rationals respectively.)	(d) (Z _n , +)
	(vi)	Travelling Salesman (a) Euler's Circuit (c) Regular Graph	problem is associ	ated with (b) Hamiltonian (d) Isomorphic G	Circuit Graph.
	(vii)	A square is a planar (a) 0	graph and has reg (b) 1	ions (c) 2	(d) 3.
	(viii)	The chromatic numb (a) 2	oer of K₃ is (b) 3	(c) 4	(5) 5.
	(ix)	The number of binar (a) 1	y operations requ (b) 2	ired for a set to be a ring is (c) 3	(d) 0.
	(x)	If the set of residue o (a) an odd integer (c) 1	class modulo n is a	n integral domain then n is (b) an even integ (d) a prime integ	s ger ger.
MA	TH 220)3	1		

В.ТЕСН/IT/4^{тн} SEM/MATH 2203 (BACKLOG)/2021 Group – В

- 2. (a) Let *G* be non-empty graph. Prove that if *G* is bipartite, $\chi(G) = 2$.
 - (b) Prove that for a complete graph K_n with n vertices, $\chi(K_n) = n, \forall n \ge 1$.
 - (c) Define dual of a graph. Draw the dual graph of K₄.

3 + 3 + (2 + 4) = 12

- 3. (a) State and prove Euler's formula.
 - (b) What is the maximum number of edges in a planar graph with 10 vertices?
 - (c) If a graph has 250 faces and 300 edges, can it be planar?

6 + 3 + 3 = 12

Group - C

- 4. (a) Give an example of binary operation with suitable explanation for each of the following cases:
 - (i) non-associative
 - (ii) non-commutative.
 - (b) Write down the multiplicative Cayley Table for U(8).
 - (c) Let *G* be group. If $a, b \in G$, then prove that $(ab)^{-1}=b^{-1}a^{-1}$.
 - (d) Give two examples of finite groups of order at least 4.

(2+2)+3+3+(1+1)=12

- 5. (a) Let $A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 4 & 5 & 2 \end{pmatrix}$ be two permutations. Show that $AB \neq BA$.
 - (b) Find the order of the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix}$.
 - (c) Show that the set *G* of all ordered pairs (*a*,*b*) with $a \neq 0$, of real numbers *a*, *b* forms a group with operation ' \circ ' defined by, (*a*,*b*) \circ (*c*,*d*)=(*ac*, *bc*+*d*)

4 + 2 + 6 = 12

Group – D

- 6. (a) Prove that every subgroup of a cyclic group is cyclic.
 - (b) Let *G* be a group. If $a, b \in G$ such that $a^4 = e$, the identity element of *G* and $ab = ba^2$, prove that a = e.

6 + 6 = 12

7. (a) Let $G = \langle a \rangle$ be a cyclic group of order *n*. Then for any integer *r*, $1 \le r < n$, a^r is a generator of *G* iff gcd(r,n) = 1.

MATH 2203

B.TECH/IT/4TH SEM/MATH 2203 (BACKLOG)/2021

(b) Prove that any two right or left cosets of a subgroup are either disjoint or identical.

6 + 6 = 12

Group – E

- 8. (a) An element *a* of a ring *R* is idempotent if $a^2=a$.
 - (i) Show that the set of all idempotent elements of a commutative ring is closed under multiplication.
 - (ii) Find all idempotent elements in the ring $Z_6 \times Z_2$.
 - (b) Let *R* be a ring and let *a* be a fixed element of *R*. Let $I_a = \{x \in R : ax = 0\}$. Show that I_a is a subring of *R*.

(3+4)+5=12

- 9. (a) Define characteristic of a ring *R*. Let *R* be a commutative ring with unity of characteristic 4. Compute and simplify $(a+b)^4$ for *a*,*b* in *R*.
 - (b) Define divisors of zero in a ring *R*.
 - (c) Solve the equation $x^2+2x+4=0$ in Z₆.

(2+5)+2+3=12

Note:

- 1. Students having backlog in MATH2203 (IT) (old syllabus) and if not joined in any Google classroom for this paper code yet, are advised to follow both Step-I and Step-II as mentioned below in order to submit the answer-scripts properly.
- 2. Students who have already joined any Google Classroom for MATH2203 (IT) (old syllabus) can directly go to Step-II as mentioned below.

Department & Section	Steps	Link
IT (Backlog)	Step-I : Join Google Classroom using institutional email account	https://classroom.google.com/c/Mzc1OTE3NDg3ODI0?cjc=eebzmyp
	Step-II: Submit the answer script.	https://classroom.google.com/c/Mzc1OTE3NDg3ODI0/a/Mzc1OTE4MjU1NDE5/details