ALGEBRAIC STRUCTURES (MATH 2201)

Time Allotted : 3 hrs

Full Marks: 70

 $10 \times 1 = 10$

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following:
 - (i) Let *S* be a set of *n* elements. The number of ordered pairs in the largest equivalence relation on *S* is (a) 1 (b) *n* (c) n - 1 (d) n^2 .
 - (ii) Consider the binary relation $R = \{(x, y), (x, z), (z, x), (z, y)\}$ on the set $\{x, y, z\}$. Which one of the following is TRUE?
 - (a) *R* is symmetric but not antisymmetric
 - (b) *R* is not symmetric but antisymmetric
 - (c) *R* is both symmetric and antisymmetric
 - (d) *R* is neither symmetric nor antisymmetric.
 - (iii) Which one of the following is true?
 - (a) $R \cap S = (R \cup S) [(R S) \cup (S R)]$
 - (b) $R \cup S = (R \cap S) [(R S) \cup (S R)]$
 - (c) $R \cap S = (R \cup S) [(R S) \cap (S R)]$
 - (d) $R \cap S = (R \cup S) \cup (R S).$
 - (iv) In \mathbb{Z}_7 , (a) $\overline{7} = \overline{15}$ (b) $\overline{7} = \overline{48}$ (c) $\overline{7} = \overline{70}$ (d) $\overline{7} = \overline{1}$.

(v) If x is an element of a group G and O(x) = 5, then (a) $O(x^{10}) = 5$ (b) $O(x^{15}) = 5$ (c) $O(x^{23}) = 5$ (d) $O(x^{20}) = 5$.

- (vi) Index of a subgroup *H* of a group *G* is 5 and its order is 3. The order of the group *G* is
 (a) 8 (b) 10 (c) 15 (d) 25.
- (vii) In the additive group $(\mathbb{R}, +)$, $(10)^0 =$ (a) 1 (b) 0 (c) -1 (d) 10.

MATH 2201

B.TECH/CSE/IT/4TH SEM/MATH 2201/2021

- (viii) $H = \{1, -1\}$ is a multiplicative subgroup of $G = \{1, -1, i, -i\}$. Then the index of H in G is: (a) 1 (b) 2 (c) 3 (d) 4.
- (ix) Which one of the following rings is an integral domain? (a) \mathbb{Z}_{101} (b) \mathbb{Z}_{200} (c) \mathbb{Z}_{2001} (d) \mathbb{Z}_{356}

(x) The unity element of the ring of matrices $\left\{ \begin{pmatrix} x & y \\ -y & x \end{pmatrix} : x, y \in \mathbb{R} \right\}$ with respect to matrix addition and matrix multiplication is (a) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ (b) $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (d) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

Group – B

- 2. (a) Let $A = \{a, b, c, d\}$, $B = \{x, y, z\}$, $C = \{p, q, r, s\}$, $\rho = \{(a, y), (b, x), (c, z), (d, x)\}$ and $\sigma = \{(x, q), (x, r), (y, s), (z, p)\}$. Find the relation matrix M_{ρ} , M_{σ} and $M_{\sigma \circ \rho}$.
 - (b) Find whether the following relation ρ defined by " $a\rho b$ iff $|a| \le b$ ", $a, b \in \mathbb{R}$, the set of real numbers, is (i) reflexive, (ii) symmetric, (iii) transitive.

6 + 6 = 12

- 3. (a) Draw the Hasse diagram representing the partial ordering $\{(a, b) | a \text{ divides } b\}$ on the set $S = \{1,2,3,4,6,8,12\}$. Is the poset a lattice? Justify your answer.
 - (b) Define a distributive lattice. Prove that a lattice (L, \leq, \lor, \land) is distributive if and only if $a \lor (b \land c) = (a \lor b) \land (a \lor c) \forall a, b, c \in L$.

5 + (2 + 5) = 12

Group – C

- 4. (a) Show that the set $G = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ is a group with respect to addition, where \mathbb{Q} denotes the set of rational numbers.
 - (b) Let *G* be a group and $a, b \in G$. Show that $(aba^{-1})^n = aba^{-1}$ if and only if $b = b^n$.
 - (c) Let *S* be a set having *n* elements. How many distinct binary operations can be defined on *S* ? Explain your answer.

4 + 6 + 2 = 12

5. (a) If *a* is a permutation given by (1 2 3 4), then show that the set $\{a, a^2, a^3, a^4\}$ forms a cyclic group.

(b) Find a solution of the equation ax = b in S_3 , where $a = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ and $b = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$.

(c) Let *G* be a group. If $a, b \in G$, then prove that $(ab)^{-1} = b^{-1}a^{-1}$.

6 + 3 + 3 = 12

MATH 2201

B.TECH/CSE/IT/4TH SEM/MATH 2201/2021

Group – D

- 6. (a) Prove that the intersection of any two subgroups of a finite group *G* is a subgroup of *G*. Is a similar result true for union? Justify your answer.
 - (b) State and prove Lagrange's theorem regarding the order of a subgroup of a finite group.

(4+2)+6=12

- 7. (a) If *a* be an element of order *n* in a group *G* and *p* be prime to *n*, then prove that a^p is also of order *n*.
 - (b) Show that every proper subgroup of a group of order **6** is cyclic.

6 + 6 = 12

Group – E

- 8. (a) Find all the idempotent elements in the ring $\mathbb{Z}_6 \times \mathbb{Z}_{12}$.
 - (b) Determine whether the given map $\phi: GL(2, \mathbb{R}) \to (\mathbb{R}, +)$ defined by $\phi\left(\begin{bmatrix}a & b\\c & d\end{bmatrix}\right) = a + b + c + d$ is a homomorphism, where $GL(2, \mathbb{R})$ is the general linear group of degree 2.

7 + 5 = 12

- 9. (a) Examine if the ring of matrices $\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} : a, b \in \mathbb{R} \}$ is a field.
 - (b) Prove that the characteristic of an integral domain is either zero or prime.

6 + 6 = 12

Department & Section	Submission Link
CSE-A	https://classroom.google.com/c/MzI3NTY00Tc0MDM3/a/MzczNDM0MzY0NDUx/details
CSE-B	https://classroom.google.com/c/MzI3NTY00Tc0MjI4/a/MzczNDM0MzY0NTUw/details
CSE-C	https://classroom.google.com/c/MzI3NTY2NjMwMjI2/a/MzczNDM0NDIxNTkw/details
IT	https://classroom.google.com/c/MzI3NTcyMTA0Mzg0/a/MzczNDM0NDIxNjQw/details