CHEMISTRY - I (CHEM 1001)

Time Allotted: 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

Choos	e the correct altern	10	$0 \times 1 = 10$		
(i)	Entropy of an ideal (a) Pressure only (c) Both (a) & (b)	gas depends upon its		(b) Temperature on (d) Neither (a) nor (ly b).
(ii)	The hybridization o (a) sp ²	of the central atom in ICl (b) sp ³	l₃ mol (c)	ecule is sp³d	(d) sp ³ d ²
(iii)	The half cell reactio (a) metal-metal ion (c) metal-sparingly	on AgCl + $e \rightarrow Ag + Cl^{-} occ$ electrode salt electrode	curs a	at (b) Redox electrode (d) none of these.	
(iv)	The ground state en (a) zero	nergy of a particle in an ((b) h²/8mL²	one d (c) -	imensional box is · h²/8mL²	(d) none.
(v)	 t_{1/2} for second order reaction (2A → pdt) is (a) Independent of concentration of the reactant (b) Directly proportional to concentration of the reactant (c) Inversely proportional to the initial concentration of the reactant (d) None of the above. 				
(vi)	The dipole moment (a) Ethyl chloride (c) Ethyl iodide	is highest for		(b) Ethyl bromide (d) Ethyl fluoride.	
(vii)	 wii) Which one is true? (a) Secondary storage cell must always be reversible (b) Primary batteries are rechargeable (c) For a spontaneous cell reaction the E_{cell} is negative (d) In an electrolytic cell chemical energy is transformed to electrical energy. 				al energy.
	Choos (i) (ii) (iii) (iv) (v) (v) (vi)	 Choose the correct altern (i) Entropy of an ideal (a) Pressure only (c) Both (a) & (b) (ii) The hybridization of (a) sp² (iii) The half cell reaction (a) metal-metal ion (c) metal-sparingly (iv) The ground state en (a) zero (v) t_{1/2} for second orde (a) Independent of (b) Directly proposition (c) Inversely proposition (c) Inversely proposition (d) None of the about (vi) The dipole moment (a) Ethyl chloride (c) Ethyl iodide (vii) Which one is true? (a) Secondary storn (b) Primary battern (c) For a spontane (d) In an electrolyte 	Choose the correct alternative for the following (i) Entropy of an ideal gas depends upon its (a) Pressure only (c) Both (a) & (b) (ii) The hybridization of the central atom in ICL (a) sp ² (b) sp ³ (iii) The half cell reaction AgCl + $e \rightarrow Ag + Cl^{-}$ oc (a) metal-metal ion electrode (c) metal-sparingly salt electrode (iv) The ground state energy of a particle in an (a) zero (b) h ² /8mL ² (v) t _{1/2} for second order reaction (2A \rightarrow pdt) is (a) Independent of concentration of the reaction (b) Directly proportional to concentration (c) Inversely proportional to the initial co (d) None of the above. (vi) The dipole moment is highest for (a) Ethyl chloride (c) Ethyl iodide (vii) Which one is true? (a) Secondary storage cell must always be (b) Primary batteries are rechargeable (c) For a spontaneous cell reaction the Ecce (d) In an electrolytic cell chemical energy	 Choose the correct alternative for the following: (i) Entropy of an ideal gas depends upon its (a) Pressure only (c) Both (a) & (b) (ii) The hybridization of the central atom in ICl₃ mol (a) sp² (b) sp³ (c) (iii) The half cell reaction AgCl + e → Ag + Cl· occurs a (a) metal-metal ion electrode (c) metal-sparingly salt electrode (iv) The ground state energy of a particle in an one d (a) zero (b) h²/8mL² (c) · (v) t_{1/2} for second order reaction (2A → pdt) is (a) Independent of concentration of the reactar (b) Directly proportional to concentration of th (c) Inversely proportional to the initial concent (d) None of the above. (vi) The dipole moment is highest for (a) Ethyl chloride (c) Ethyl iodide (vii) Which one is true? (a) Secondary storage cell must always be revee (b) Primary batteries are rechargeable (c) For a spontaneous cell reaction the E_{cell} is not (d) In an electrolytic cell chemical energy is transportant. 	Choose the correct alternative for the following: 10 (i) Entropy of an ideal gas depends upon its (a) Pressure only (b) Temperature on (c) Both (a) & (b) (ii) The hybridization of the central atom in ICl ₃ molecule is (a) sp ² (b) sp ³ (c) sp ³ d (iii) The half cell reaction AgCl + e → Ag + Cl ⁻ occurs at (a) metal-metal ion electrode (b) Redox electrode (iv) The ground state energy of a particle in an one dimensional box is (a) zero (b) h ² /8mL ² (c) - h ² /8mL ² (v) t _{1/2} for second order reaction (2A → pdt) is (a) Independent of concentration of the reactant (b) Directly proportional to concentration of the reactant (b) Directly proportional to the initial concentration of the reactant (c) Ethyl iodide (d) Ethyl fluoride. (vi) The dipole moment is highest for (a) Ethyl chloride (b) Ethyl bromide (vii) Which one is true? (a) Secondary storage cell must always be reversible (b) Primary batteries are rechargeable (c) For a spontaneous cell reaction the Ecell is negative (d) In an electrolytic cell chemical energy is transformed to electrice

(viii)	Pyrrole (C ₄ H ₄ NH) is	
	(a) aromatic substance	(b) non-aromatic substance
	(c) anti-aromatic substance	(d) none of these.

- (ix) Ostwald's dilution law is applicable in case of the solution of
 (a) NaCl
 (b) CH₃COOH
 (c) NaOH
 (d) H₂SO₄.
- (x) Which of the following conformations of n-butane is the least stable?
 (a) Gauche
 (b) Fully eclipsed
 (c) Eclipsed
 (d) Anti.

Group – B

- 2. (a) When the Carnot cycle efficiency will be maximum?
 - (b) What is chemical potential? Derive Gibbs Duhem relations.
 - (c) A microscope using suitable photons is employed to locate an electron in an atom within a distance of 0.1 A°. What is the uncertainty involved in the measurement of its velocity? (mass of electron= 9.11×10^{-31} kg)
 - (d) Why does CO_2 absorb IR energy? What are the applications of IR spectroscopy? 1 + (1 + 4) + 3 + (1 + 2) = 12
- 3. (a) Derive the energy expression for particle in one dimensional box.
 - (b) What is the de Broglie Hypothesis? Consider a beam of electron with a speed 5×10^6 m/s and calculate the de Broglie wavelength.
 - (c) Calculate the entropy of mixing 2 moles of N_2 and 3 moles of H_2 behaving as ideal gases.
 - (d) On passing monochromatic light through a 0.01 (M) solution in a cell of 1 cm thickness, the intensity of the transmitted light was reduced to 10%. Calculate the molar extinction coefficient.

4 + (1 + 2) + 3 + 2 = 12

Group – C

- 4. (a) Draw the molecular orbital energy level diagram of C₂ molecule with electronic configuration and calculate the bond order.
 - (b) The bond angle in H_2O is 104.5° while it is 92° in H_2S justify using VSEPR theory.
 - (c) Why is the first ionization potential of beryllium more than that of boron?
 - (d) Deduce the expression for pH of a solution containing salt of weak acid and weak base.
 - (e) Why does fumaric acid have a higher melting point than maleic acid?

3 + 2 + 2 + 4 + 1 = 12

CHEM 1001

- 5. (a) Draw the MO diagram for HF molecule and calculate the bond order.
 - (b) In CH_2F_2 molecule angle H-C-H is higher than angle F-C-F. Explain using Bent's rule.
 - (c) Calculate the screening constant and effective nuclear charge experienced by a d-electron of Cu (29) using Slater rule.
 - (d) Explain why the electronegativity of Ge is higher than Si, though the reverse is expected.
 - (e) Do you expect the pH of pure water at 100°C to be less than 7 or more than 7? Explain your answer.
 - (f) Why the solubility of AgCl (a sparingly soluble salt) further decreases when NaCl is present in solution?

3 + 2 + 2 + 2 + 2 + 1 = 12

Group – D

- 6. (a) Derive 1^{st} order rate equation in terms product concentration.
 - (b) Consider the reaction, $CH_3COOC_2H_5 + NaOH \rightarrow CH_3COOH + C_2H_5OH$, which follows 2^{nd} order kinetics. Calculate $t_{1/2}$ of the reaction. Given that 25% of the reaction is completed in 5 minutes.
 - (c) Define ionic mobility. Ion conductance of Ag⁺ and NO_{3⁻} are 53.9 and 61.84 mho cm². Calculate the ionic mobilities and transport numbers of each ion.
 - (d) What is the role of polymer electrolyte membrane in a H_2 - O_2 fuel cell? Express the anodic and cathodic reactions.

2 + 2 + (1 + 3) + (2 + 2) = 12

- 7. (a) What are the important criteria for collision theory in chemical transformation?
 - (b) Write down the Arrhenius equation for the temperature dependence of specific rate and explain the terms used.
 - (c) Give account of 'Relaxation effect' in ionic cloud theory that retards the speed of ions in solution.
 - (d) Describe the Pb-acid storage cell with cell configuration and the charging discharging reaction.
 - (e) Consider the cell, Cd/Cd²⁺//KCl/Hg₂Cl₂(s)-Hg Express the spontaneous cell reaction and find out free energy change for the reaction involved, under standard conditions. Given, $E_{Cd}^0 = +0.402$ V and $E_{calomel}^0 = -0.268$ V.

2 + 2 + 2 + 3 + 3 = 12

Group – E

- 8. (a) Identify the rotational axes with proper fold and write the total number of σ planes present in NH₃ molecule.
 - (b) Describe positional isomer with example.
 - (c) Explain mechanistically how the acid-catalysed dehydration of 2-methyl butanol, [CH₃CH₂C(OH)(CH₃)₂], gives 2-methyl 1-butene [CH₃CH₂(CH₃)C=CH₂], and 2-methyl 2-butene [CH₃CH=C(CH₃)₂]. Which product is predominating and why?
 - (d) Write down uses and side effects of oil of wintergreen.
 - (e) Find out the absolute configuration of the each stereocentre of the following molecules and identify the relation between them.

$$H_{3}CH_{2}C \xrightarrow{H} CH_{2}OH H \xrightarrow{CH_{3}} CH_{2}CH_{3}$$

$$CH_{3} CH_{2}OH H \xrightarrow{CH_{2}OH} CH_{2$$

- 9. (a) Briefly write down the synthetic route and uses of paracetamol.
 - (b) Differentiate between $S_N 1$ and $S_N 2$ reactions.
 - (c) Why does the orientation of HBr addition in presence of peroxide differ from that of the addition in absence of peroxide? Illustrate your answer mechanistically taking the substrate 2-methyl propene.
 - (d) Why N,N-dimethylaniline is weak as a base than N,N-2,6-tetramethyl aniline?
 (2 + 1) + 3 + (2 + 2) + 2 = 12

Department & Section	Submission Link			
ВТ	https://classroom.google.com/c/MjkwMTMwMTk4NjEy/a/Mzc0NDI3MDQzMTQ0/details			
CE - A	https://classroom.google.com/w/MzExOTI2ODQ5NDA2/tc/Mzc0NDI3MzgwNzUz			
CE - B	https://classroom.google.com/c/MzExOTAwMjQ1MDAx/a/Mzc0NDMwMTM5MzIy/details			
СНЕ	https://classroom.google.com/w/MzQ0MjEzMzA4NjEz/tc/Mzc0NDUyNTg3Nzc0			
EE	https://classroom.google.com/w/MzEyNTE3OTcxNjE1/tc/MzcxODUzMDg5ODQ3			
ME - A	https://classroom.google.com/c/MzExOTAwMjQ1MDE2/a/Mzc0NDI3MTM0MDIw/details			
ME - B	https://classroom.google.com/c/MzEyNDI2MTQ4NzA5/a/Mzc0Mzc0NjQ3MDAz/details			
BACKLOG	https://classroom.google.com/c/Mzc0MzQ5MDQ3NTA3?cjc=6ghfxnq			