ADVANCED COMPUTATIONAL MATHEMATICS AND GRAPH THEORY (MATH 4282)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choose the correct alternative for the following:				10 × 1 = 10
	(i)	The fifth Bernoulli nutries (a) $-\frac{1}{30}$	mber $B_5 =$ (b) $-\frac{1}{2}$	(c) 0	(d) $\frac{1}{5}$
	(ii)	(1! + 2! + 3! + 4! + ·· (a) 4	· + 400!)mod 6 = (b) 3	(c) 5	(d) 1
	(iii)	$\varphi(31) + \varphi(11)$ (a) 40	(b) 30	(c) 10	(d) 42
	(iv)	$\begin{bmatrix} 6 \\ 1 \end{bmatrix} =$ (a) 720	(b) 6	(c) 24	(d) 120
	(v)	The generating function (a) $\frac{1}{1-3x}$	on of the sequence { (b) $\frac{1}{(1+3x)^2}$	1, -3,9, -27,81,, (-1 (c) $\frac{1}{1+3x}$	$n^{n} 3^{n}, \}$ is (d) $\frac{1}{1+x^{3}}$
	(vi)	Which one of the follo (a) 89	wing is a Fibonacci 1 (b) 235	number? (c) 146	(d) 36
	(vii)	The Eulerian number (a) 4	$\binom{3}{2}$ is (b) 3	(c) 2	(d) 1
	(viii)	$\Delta(x^{\underline{3}}) =$ (a) $2x^2 - 3x$	(b) $3x^2 + 2x$	(c) $3x^2 - 3x$	(d) $3x^2 + 3x$
	(ix) The chromatic number of the following graph is				
		$\langle \mathbf{x} \rangle$	(a) 2 (c) 5	(b) 1 (d) 3	

MATH 4282

- (x) If $\omega(G)$ denotes the number of components in a graph *G* and an edge *e* be a bridge in *G* then
 - (a) $\omega(G e) = \omega(G)$ (b) $\omega(G - e) = \omega(G) + 1$ (c) $\omega(G - e) < \omega(G) + 1$ (d) $\omega(G - e) = 1$

Group - B

2. (a) Consider the 'Tower of Hanoi' problem. Let T_n denote the minimum number of moves that will transfer n disks from one peg to another if only one disk is moved at a time and a larger one is never moved onto a smaller one. Prove that $T_n \leq 2T_{n-1} + 1$, for n > 0. Explain why the formula uses ' \leq ' instead of '='.

(b) (i) Prove that
$$\Delta(x^{\underline{m}}) = mx^{\underline{m-1}}$$
.
(ii) Let $\nabla f(x) = f(x) - f(x-1)$. What is $\nabla(x^{\overline{m}})$? Prove your answer.
 $6 + (3 + 3) = 12$

- 3. (a) In the Josephus problem involving *n* people numbered 1 to *n* around a circle, let J(n) denote the survivor's number. State the recurrence obeyed by J(n). Calculate J(n) for n = 1,2,3,4, ..., 15,16. Prove that $J(2^m + l) = 2l + 1$, where *l* is even.
 - (b) Find a necessary and sufficient condition that [nx] = n[x], when *n* is a positive integer.(Your condition should involve $\{x\}$.)

6 + 6 = 12

Group - C

- 4. (a) Prove the following recurrence formula for ${n \choose k}$, the Stirling numbers of the second kind : ${n \choose k} = k {n-1 \choose k} + {n-1 \choose k-1}$, integer n > 0.
 - (b) Let B_n denote the *n*-th Bernoulli number. Prove that $B_{2m+1} = 0$ for all integers $m \ge 1$.

6 + 6 = 12

- 5. (a) State the binomial theorem. Use it to prove that the number of subsets of a set having n elements is 2^n .
 - (b) State the definition of the Eulerian numbers $\binom{n}{k}$. Calculate $\binom{4}{2}$, $\binom{4}{1}$, $\binom{4}{3}$ by considering the set {1,2,3,4}. Show your work in detail.

6 + 6 = 12

Group – D

6. (a) Find the greatest common divisor of 188 and 119 by using the Euclidean algorithm. Express it as 188x + 119y where x and y are integers. Show your work in detail.

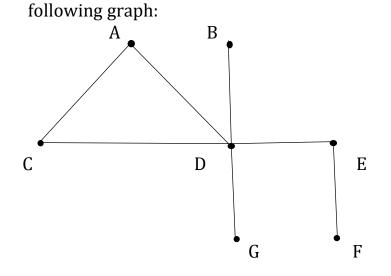
MATH 4282

(b) Find $(2^{402} + 3^{501} + 5^{802}) \mod 17$. Show your calculations in detail and state any theorem that use.

6 + 6 = 12

- 7. (a) Prove that (i) $[x] = n \Leftrightarrow x 1 < n \le x$ and (ii) $x < n \Leftrightarrow x 1 < n \le x$, where *n* is an integer and *x* is a real number.
 - (b) Let φ(n) denote the number of integers amongst {0,1,2,...,m-1} that are relatively prime to n. Let p be a prime and k be a positive integer.
 (i) Prove that φ(p^k) = p^k p^{k-1}. (ii) Find φ(72). Show your calculation in detail.

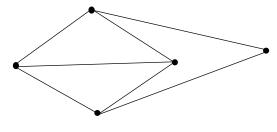
6 + 6 = 12



Group – E

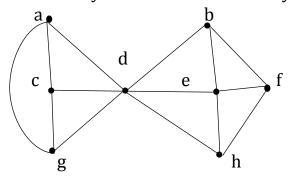
Find four independent sets of vertices and independence number of the

(b) Apply Decomposition theorem to find the chromatic polynomial of the following graph:



4 + 8 = 12

9. (a) Define edge connectivity and vertex connectivity of a graph. Find the edge connectivity and vertex connectivity of the graph given below:



MATH 4282

8.

(a)

- (b) Applicants a_1, a_2, a_3 and a_4 apply for five posts p_1, p_2, p_3, p_4 and p_5 . The applicants are done as follows : $a_1 \rightarrow \{p_1, p_2\}, a_2 \rightarrow \{p_1, p_3, p_5\}, a_3 \rightarrow \{p_1, p_2, p_3, p_5\}$ and $a_4 \rightarrow \{p_3, p_4\}$. Using Hall's marriage theorem find
 - (i) Whether there is a perfect matching of the set of applicants into the set of objects?
 - (ii) If yes, find a matching where every applicant can be offered a single post.

6 + 6 = 12

Department & Section	Submission Link		
AEIE & CSE	https://classroom.google.com/c/Mjk4ODM5NTg1NTE3/a/MzQwNjl3NTc4Njk4/details		