B.TECH/AEIE/6TH SEM/AEIE 3203(BACKLOG)/2021

ADVANCED MICROPROCESSORS & MICROCONTROLLERS (AEIE 3203)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A (Multiple Choice Type Questions)

=10

	(Multiple Choice Type Questions)			
1.	Choose the correct alternative for the following:			10 × 1
	(i)	Address bus of 8086 μP is de-multi (a) Latch (c) 3:8 decoder	plexed using- (b) Tri-state buffer (d) De-multiplexer	
	(ii)	In 16x16 bit multiplication operation (a) AX (c) CX	on the higher 16 bit result is (b) BX (d) DX	stored in-
	(iii)	In MOV AH, [2000] instruction data (a) D0-D7 (c) D0-D15	a is transferred via - (b) D8-D15 (d) None of these	
	(iv)	The last instruction in an interrupt (a) JMP (c) RET	service routine is- (b) HLT (d) IRET	
	(v)	MOVSW instruction transfers - (a) 8 bit data from SI to DI (b) 16 bit data from SI to DI (c) 8 bit data from memory pointed (d) 16 bit data from memory pointed	_	
	(vi)	In 8086 μ P direction of data flow is controlled by- (a) ALE (b) $\overline{DT/R}$ (c) \overline{BHE} (d) \overline{DEN}		
	(vii)	In 8086 µP NMI is an (a) Non-maskable interrupt (c) Hardware interrupt	(b) Vectored interrup	ot

AEIE 3202 1

B.TECH/AEIE/6TH SEM/AEIE 3203(BACKLOG)/2021

- (viii) How many I/O ports are present in $8051 \mu C$?
 - (a) 2

(b) 3

(c)4

- (d) 5
- (ix) In $8051 \mu C$ function of CLR C instruction is
 - (a) Clear C register content

(b) Complement C register content

(c) Clear CY flag bit

- (d) Complement CY flag bit
- (x) In 8051 μ C if RS₁=1 and RS₀=0 then the selected register bank is-
 - (a) Bank 0

(b) Bank 1

(c) Bank 2

(d) Bank 3

Group - B

- 2. (a) What is the function of BIU and EU in 8086 μ P?
 - (b) What is the function of DX register in MUL and DIV instructions?
 - (c) Let, the content of $CS=0000_H$, $DS=1000_H$, $SS=2000_H$, $ES=3000_H$. Calculate the physical address for the following instructions
 - i) MOV AL,[8000_H]
 - ii) MOV [BX],CL; Where, BX= $8050_{H.}$
 - (d) What is memory segmentation? What are the advantages of memory segmentation?

$$2 + 3 + 3 + (2 + 2) = 12$$

- 3. (a) Explain the function of following instructions of 8086 μP (*any two*) (i) CMPSW, (ii) STD, (iii) LOOP 8050_H.
 - (b) Write a program to unpack an 8 bit data stored at memory location $1000:2000_{\rm H}$. Store the result at memory location starting from $2000:1000_{\rm H}$.
 - (c) With one suitable circuit diagram discuss how address bits are separated from multiplexed address and data buses.

$$(2 \times 2) + 4 + 4 = 12$$

Group - C

- 4. (a) Design an interface between 8086 μP and two chips of 32K X 8 RAM using 3:8 decoder. The starting address of RAM is 90000 $_{H}$. Calculate the final address of the memory chips.
 - (b) What are the differences between MOV [2000], AL and MOV [2000], AX instructions?

$$9 + 1 + 2 = 12$$

5. Interface two 7-segment displays with 8086 such that the addresses assigned to them are $80_{\rm H}$ and $81_{\rm H}$. Write a program to display and blink (with 1 sec delay approx.) the last two digits of your autonomy roll number continuously.

$$(6+6) = 12$$

B.TECH/AEIE/6TH SEM/AEIE 3203(BACKLOG)/2021

Group - D

- 6. (a) Draw the flag register of 8051 μ C and discuss the function of RS0 and RS1 bits.
 - (b) What is the function of \overline{EA} pin in 8051 μ C?
 - (c) Draw the interfacing circuit (including power on reset, crystal oscillator and power supply) to connect one LED to P1.0 pin of 8051 μ C. Write an assembly level program to add two 8 bit numbers and blink the LED if addition generates a carry, otherwise LED is OFF. Let the delay subroutine is available at XXXX_H memory location.

$$(1+2)+2+(3+4)=12$$

- 7. (a) Write an assembly level program for $8051~\mu\text{C}$ to *cut paste* a block of 10 byte data from one memory to another memory location (internal RAM) in reverse order.
 - (b) Write short notes on (any two)
 - (i) TMOD register of 8051 μC
 - (ii) Internal RAM of $8051 \mu C$
 - (iii) Serial data communication in $8051~\mu C$.

$$4 + (4 \times 2) = 12$$

Group - E

- 8. (a) Write the main features of PIC 16F877 microcontroller.
 - (b) Draw the block diagram to interface a DAC with PIC 16F877 microcontroller. Write a program in C or in assembly language to generate a square wave.

$$4 + (3 + 5) = 12$$

9. (a) Write short notes on (any three)

$$(3\times4)=12$$

- (i) STATUS register of PIC 16F877 microcontroller
- (ii) Memory organization of PIC 16F877
- (iii) I/O ports of PIC 16F877
- (iv) Direct and Indirect addressing in PIC 16F877.

Department & Section	Submission Link
AEIE	https://classroom.google.com/c/MzY0NTQ4ODY5Mjk1/a/MzY0NTQ4Mzk0MTk4/details