B.TECH/AEIE/4TH SEM/AEIE 2201/2021

DIGITAL ELECTRONICS (AEIE 2201)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choose the correct alternative for the following:			10 × 1 = 10
	(i)	The logic function $AB + \overline{AC} + BC$ is e (a) A+BC (c) $AB + \overline{AC}$	quivalent to (b) A+ABC (d) $\overline{A} + \overline{BC}$	
	(ii)	An 8 bit adder circuit requires (a) 4 full adders and 4 half adders (c) 7 full adders and one half adder	 (b) 8 full adders (d) 1 full adder and 7	half adders
	(iii)	A buffer can be realized by a 2- input (a) both inputs are at logic 1 (c) one input is at logic 1	X-OR gate when (b) one input is at log (d) both inputs are a	gic 0 t logic 0
	(iv)	Gray code is advantageous as it requi (a) moderate switching activity (c) minimum switching activity	res (b) maximum switch (d) none of the above	ing activity
	(v)	2's complement of 11001011 is (a) 01010111 (c) 00110101	(b) 11010100 (d) 11100010	
	(vi)	The terminal count of a typical modu (a) 1000 ₂ (c) 1111 ₂	lo-15 binary counter is (b) 1110 ₂ (d) 1101 ₂	
	(vii)	The range of decimal numbers for n-bit signed binary representation in 2 complement form is (a) 1 to $(2^{n-1}-1)$ (b) $+(2^{n-1}-1)$ to $-(2^{n-1})$ (c) $+(2^{n-1}-1)$ to $-(2^{n-1}-1)$ (d) $-(2^{n-1}-1)$ to (-1)		esentation in 2's)
((viii)	How many flip-flops are required to make a MOD-15 counter? (a) 3 (b) 8 (c) 9 (d) 4		
AEII	E 2201	1	1	

B.TECH/AEIE/4TH SEM/AEIE 2201/2021

- (ix) Asynchronously connected three T flip-flops with T = 1 has a 12 KHz clock input. The Q output is
 - (a) a 6 KHz square wave
 - (c) a 3 KHz square wave
- (b) constantly high
- (d) constantly low
- - (c) Underflow (d) Predecessor

Group – B

- 2. (a) Design and explain the operation of a circuit to perform addition as well as subtraction of 4-bit numbers.
 - (b) What is the advantage of carry look ahead (CLA) logic to design full adder circuit?

8 + 4 = 12

- 3. (a) Design a 4-bit binary to gray code converter.
 - (b) Realize a 16:1 multiplexer by using 4:1 multiplexers.

7 + 5 = 12

Group – C

- 4. (a) Minimize the logic function $Y(A,B,C,D,E) = \sum m(0,2,3,5,7,8,10,11,14,15,16,18,24,26,27,29,30,31)$ by using Karnaugh map.
 - (b) Design a D- flip flop with characteristic table using only NAND gates.

8 + 4 = 12

- 5. (a) What is the racing problem in J-K flip flop? Explain the remedy of this problem with necessary circuit and wave forms.
 - (b) What is the difference between flip-flop and latch?

(3+6)+3=12

Group – D

- 6. (a) Design and explain with output waveforms of a frequency divider circuit of which input frequency is 8KHz and output frequency is 500Hz.
 - (b) Design an asynchronous counter to start the count at $(6)_{10}$ and stop the count at $(13)_{10}$ and start the count again from $(6)_{10}$.

6 + 6 = 12

B.TECH/AEIE/4TH SEM/AEIE 2201/2021

- 7. (a) Design a ripple counter to start the count at 2 and stop the count at 12 and start the count again from 2.
 - (b) Write short note on Ring counter.

8 + 4 = 12

Group – E

- 8. (a) Implement the given functions using programmable logic array (PLA) $P(a,b,c,d)=\sum m(1,2,9,10), Q(a,b,c,d)=\sum m(8,10,12,14) and R(a,b,c,d)=\sum m(1,3,9,11).$
 - (b) Write short notes on Flash type ADC and R-2R Ladder type DAC.

6 + (3 + 3) = 12

- 9. (a) Implement the following logic functions using PROM. $A = \sum m(0,2,4,6,8), B = \sum m(1,3,5,7), C = \sum m(0,2,7,11)$
 - (b) Design and explain the operation of a 2 input NOR and NAND gate using TTL logic.

6 + (3 + 3) = 12

Department & Section	Submission Link
AEIE	https://classroom.google.com/c/MzEyNTA2OTc2MjQx/a/Mzc0NDQwNDU5ODkw/details