B.TECH/CHE/6TH SEM/CHEN 3232(BACKLOG)/2021

COMPUTATIONAL FLUID DYNAMICS (CHEN 3232)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

 $10 \times 1 = 10$

- (i) In a marching problem the differential equation is ______
 (a) parabolic
 (b) hyperbolic
 (c) elliptic
 (d) normal ODE
- (ii) For a creeping flow, Navier-Stoke's equation will be reduced to _____ (a) $\frac{Du}{Dt} = \mu \nabla^2 u$ (b) $\frac{Du}{Dt} = -\nabla p$
- (c) $-\nabla p + \mu \nabla^2 u = 0$ (d) $\nabla p = 0$
- (iii) For irrotational flow, the condition is given by _____ (a) $\nabla .u=0$ (b) $u(\nabla .u)=0$ (c) $u(\nabla xu)=0$ (d) $\nabla xu=0$
- - (b) The difference between the analytical and numerical values
 - (c) The rate of decrease of the error with grid size
 - (d) None of the above

(v) Finite volume scheme relies on _____

- (a) The conservation form of the balance equations
- (b) Non-divergence form of the balance equations
- (c) The continuity equation alone
- (d) None of the above
- (vi) The forward difference scheme _____
 - (a) Requires three consecutive points for building derivatives
 - (b) Requires two consecutive points for building derivatives
 - (c) Requires alternate points for building derivatives
 - (d) Uses the analytical derivative

B.TECH/CHE/6TH SEM/CHEN 3232(BACKLOG)/2021

- (vii) In a multigrid iteration scheme, the internode distance at level 3 of coarse grid is equal to _____, when 'h' is the internode distance for fine grids.
 (a) 2h
 (b) 8h
 - (c) 4h (d) 16h
- (viii) The Lagrangian rate of change of property ϕ is given by _____
 - (a) $\frac{D\phi}{Dt}$ (b) $\frac{\partial\phi}{\partial t}$ (c) $u.\nabla\phi$ (d) $\nabla^2\phi$
- (ix) In hybrid scheme to find the value of property ϕ at face, central difference scheme is applied for _____
 - (a) Pe=2 (b) Pe>2
 - (c) Pe<2 (d) 2<Pe<10
- (x) Neuman boundary condition in heat transfer problem _____
 - (a) applies when the boundary temperature is specified
 - (b) applies when the boundary temperature is held at zero
 - (c) applies when the heat flow through the boundary is specified
 - (d) applies when both the boundary temperature and the heat flow through the boundary are specified

Group – B

2. (a) Show that the dimensionless form of the Navier-Stoke's equation can be written

as, $\operatorname{St} \frac{\partial U_i}{\partial \tau} + \sum \frac{\partial \left(U_i U_j \right)}{\partial X_j} = \frac{1}{\operatorname{Re}} \sum \frac{\partial^2 U_i}{\partial X_j^2} - \frac{\partial P}{\partial X_i}$. The dimensionless notation for velocity,

pressure, time and space U, P, τ and X respectively.

(b) "In the integral form of the transport equation for property ϕ , a term " $\int_{A} n \cdot (\Gamma \operatorname{grad} \phi) dA$ " represents net increase of the property due to inflow diffusional flux across the surface of the control volume." – Elaborate the correctness of the

0 . 4 . 42

8 + 4 = 12

3.

statement.

Derive one convection-diffusion type equation for the one directional fluid flow between two parallel plates (as shown in the above figure) of width 'w' m and 'D' m apart. The velocity of the fluid at the leading edge is u m/s. The viscosity and density of the fluid are μ Pa.s and ρ kg/m³ respectively.

B.TECH/CHE/6TH SEM/CHEN 3232(BACKLOG)/2021 Group – C

4. Show that the forward-in-time-backward-in-space (FTBS) scheme to solve a flow domain given by the equation $\frac{\partial \phi}{\partial t} + u \frac{\partial \phi}{\partial x} = |A|$ is conditionally stable. A is a constant.

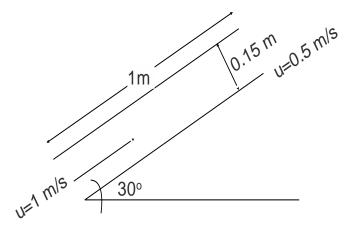
12

5. Heat is flowing in a rectangular slab of metal and can be modelled using the equation $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$ at steady state. The left edge of the slab is maintained at T_H and the right edge is at T_c . All other edges are maintained at temperature, T_{amb} . Write down the general form of the algebraic equation after applying finite difference scheme to solve temperature vector '<u>T</u> in the form $A\underline{T} = Q$ Assuming 4 grid points in the x and y direction of the slab, show the exact form of the A matrix. (6 + 6) = 12

Group – D

- 6. For a convection-diffusion property transport problem in one direction the equation is given as $\frac{\partial \phi}{\partial t} = \Gamma \frac{\partial^2 \phi}{\partial x^2}$. Find out the solution matrix for the system within a length of 1 m using central differencing, when $\Gamma = 0.1$ kg/ms, u=2.5 m/s, $\rho = 1$ kg/m³. The boundary conditions are given as $\Phi(0)=1$ and $\Phi(1)=0$. Assume $\Delta x=0.1$.
- (a) "Hybrid scheme can only be applied to a staggered grid arrangement, but not to a collocated grid arrangement." – Comment on the correctness of the statement with adequate explanation.
 - (b) $\varphi=0$ $\varphi=100$ $\varphi=100$ $\varphi=100$ $\varphi=100$

From the above figure, where φ is governed by div $(\rho u \varphi) = div(\Gamma grad \varphi) + a - b\varphi$, where $\rho=1$, $\Gamma=1$, a=10 and b=2. $\Delta x=\Delta y=1$. The flow in the x-direction=u=1 and the flow in the y-direction=v=4. Using upwind scheme find out values for φ_1 , φ_2 , φ_3 , and φ_4 .


12

4 + 8 = 12

B.TECH/CHE/6TH SEM/CHEN 3232(BACKLOG)/2021 Group – E

- 8. (a) "For a pressure-velocity coupled flow field, the staggered grid conformation becomes useful instead of collocated grid." Justify the appropriateness of the statement with relevant mathematical expression.
 - (b) Elaborate the SIMPLE algorithm for a 2D Cartesian flow with adequate mathematical derivations.

A liquid of density 1000 kg/m³ and 9. viscosity 0.001 Pa.s is flowing over the inclined plane as shown in the figure. above Using artificial compressibility method, develop a solution matrix for evaluating and velocity pressure at three intermediate nodes. Assume the flow is in streamlined condition. Given: Sound velocity=1520 m/s.

12

Department & Section	Submission Link
СНЕ	https://classroom.google.com/c/MzcwNTEzMzQ3ODYz/a/MzcwNTEzMzQ3ODc1/details