B.TECH/CSE/3RD SEM/ECEN 2104/2020

DIGITAL LOGIC (ECEN 2104)

Time Allotted: 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

× 1 = 10
e f the above.
: logic 1, then an X-NOR X-NOR,
2
n-bit parallel
2 2. n·

B.TECH/CSE/3RD SEM/ECEN 2104/2020

- (vii) The characteristic equation of a S-R flip-flop is (a) $Q_{n+1} = Q_n \overline{R} + S$ (b) $Q_{n+1} = \overline{Q_n} R + S$ (c) $Q_{n+1} = Q_n R + \overline{S}$ (d) $Q_{n+1} = Q_n$.
- (viii) How many Flip-Flops are required for a Mod-16 Counter ?
 (a) 5 (b) 6 (c) 3 (d) 4.
- (ix) Which of the memory is a volatile memory?(a) ROM (b) RAM (c) PROM (d) EEPROM.
- (x) The Digital Logic Family which has the lowest propagation delay time is
 (a)ECL (b) TTL (c) CMOS (d) PMOS

Group – B

- 2. (a) Implement the following Boolean function using 8:1 multiplexer: $F(A,B,C,D) = A\overline{B} + BD + B\overline{CD}$
 - (b) Find the minimal SOP form for the Boolean expression $f(A,B,C,D)=\sum m(1,3,4,5,9,10,11) + \sum d(6,8)$.

6 + 6 = 12

- 3. (a) Implement the following Arithmetic Operations by 2's Complement Method :
 (i) 15–12
 (ii) -12-15
 - (b) Perform the BCD addition $(695)_{BCD}+(594)_{BCD}$ mentioning all the steps clearly.

(3+3)+6=12

Group – C

- 4. (a) Design a 3 bit even parity generator and the corresponding 4 bit even parity checker circuit.
 - (b) For a four input logic function, $Y = f(I_3, I_2, I_1, I0)$, the output Y is 0 when the decimal equivalent of the binary values of the input variables $(I_3I_2I_1I_0)$ is a prime number (for example, $I_3=0$, $I_2=1$, $I_1=1$, $I_0=1$, implies $(I_3I_2I_1I_0) = (0111)_2 = (7)_{10} = 7$. As 7 is a prime number then the output is 0) otherwise the output Y is 1. Implement the logic circuit of the given function by a 4:1 multiplexer and external gates.

$$(3+3)+6=12$$

ECEN 2104

B.TECH/CSE/3RD SEM/ECEN 2104/2020

- 5. (a) Explain the advantages of a priority encoder over a standard encoder using illustrative examples with 4-line to 2-line standard encoder and a priority encoder.
 - (b) Implement a 8-to-1 line multiplexer using 4-to-1 line multiplexers.

8 + 4 = 12

Group - D

- 6. (a) Convert a S-R flip flop to D, J-K and T flip flop.
 - (b) What is a 'race around' condition in a flip flop? How is it eliminated?

(2+2+2) + (4+2) = 12

- 7. (a) Design a 4 bit register using D flip flops.
 - (b) Design a 4 bit asynchronous up and down counter.

6 + 6 = 12

Group – E

- 8. (a) Explain the logic operation of the CMOS inverter.
 - (b) Design a CMOS NAND gate and a CMOS OR gate.

(6) + (3+3) = 12

- 9. (a) Construct a two input NAND gate using CMOS logic and clearly explain its operation.
 - (b) Write two advantages of using CMOS logic.
 - (c) Realize the following logic expression using CMOS logic $F = \overline{AB + CD}$

5 + 2 + 5 = 12

Department & Section	Submission Link
CSE A	https://classroom.google.com/c/MjQxNTY3NDc5OTQ0/a/MjkyMDA5MzE1Mjlz/details
CSE B	https://classroom.google.com/c/MjEyMTlzNDkwMjk4/a/Mjc0MDY4NzQ4MTU2/details
CSE C	https://classroom.google.com/u/1/w/MTI2MzQ5ODQ4NjYy/tc/MjkxNDQ2Nzk4MTky

Department & Section	Submission Link (Backlog)
CSE	https://classroom.google.com/c/MjkxNDQ2Nzk4Mjk1?cjc=po3mifq

ECEN 2104