B.TECH/ CSE /3RD SEM/ECEN 2104 (BACKLOG)/2020

DIGITAL LOGIC

(ECEN 2104)

Time Allotted: 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choose	e the correct alternative for the following:		ollowing: 10	$10 \times 1 = 10$	
	(i)	Which of the follow (a) 1101	wing is not a valid (b) 740	l octal number? (c) 970	(d) 220.	
	(ii)	What is the Gray c (a) 101011	ode word for the (b) 110101	binary 101011? (c) 011111	(d) 111110.	
	(iii)	A full adder can be made out of (a) Two half adders (b) Two half adders and a NOT gate (c) Two half adders and a OR gate (d) Two half adders and a AND gate.				
	(iv)	(1111)2 in Grey co (a) 9	de represents (b) 15	(c) 10	(d) 16.	
	(v)	If S=0, R=1 in a SR (a) $Q_{n+1} = \overline{Q}_n$ (c) $Q_{n+1} = 0$	flip flop	(b) $Q_{n+1} = Q_n$ (d) $Q_{n+1} = 1$.		
	(vi)	The race around c (a) J-K (c) Master slave	ondition never oc	curs in Flip Flop (b)T (d) None of thes	e.	

B.TECH/CSE/3RD SEM/ECEN 2104 (BACKLOG)/2020

- (vii) A three variable Karnaugh map has
 (a) 16 minterms
 (b) 8 minterms
 (c) 24minterms
 (d) 32 minterms.
- (viii) The hexadecimal equivalent of the decimal number 115 is(a) 72(b) 73(c) 70(d) None of these.
- (ix) 2's complement of binary number 0101 is (a) 1011 (b)1101 (c)1110 (d)1001.
- (x) A device which converts BCD to seven segment is called
 (a) Encoder
 (b) Decoder
 (c) Multiplexer
 (d) None of these.

Group – B

2. (a) Realise (i)
$$Y = A + BC\overline{D}$$
 using NAND gates and
(ii) $Y = (A+C)(A+\overline{D})(A+B+\overline{C})$ using NOR gates only.

(b) Apply DeMorgan's theorem to the given expression $\overline{AB(CD + EF)}$

8 + 4 = 12

- 3. (a) Implement a 16-to-1 multiplexer using two 8-to-1 multiplexer.
 - (b) Implement the logic function $F = \sum m(1,2,5,6,7,8,10,12,13,15)$ using 8 input data selector MUX.

6 + 6 = 12

Group – C

4. Design a combinational circuit that will take 3 bit binary number as input and produce its equivalent Grey code. Write the truth table and draw the complete circuit diagram.

12

- 5. (a) Design an asynchronous Modulo 8 down counter using J-K flip flops.
 - (b) Design a 3-bit even parity generator and the corresponding 4 bit even parity checker circuit.

8 + 4 = 12

B.TECH/CSE/3RD SEM/ECEN 2104 (BACKLOG)/2020 Group – D

- 6. (a) A flip flop has a 10 ns delay from the time its CLK input goes from 1 to 0 to the time its output is complemented. What is the maximum delay in a 10-bit binary ripple counter that uses these flip flops? What is the maximum frequency at which the counter can operate reliably?
 - (b) How many flip-flops will be complemented in a 10-bit binary ripple counter to reach the next count after the following count:
 (i) 1001100111 (ii) 0011111111.
 - (c) Draw the waveforms of a 10 flip flop ripple up counter.

4 + 4 + 4 = 12

7. Design the clocked sequential circuit using JK flip flop, whose state diagram is given in the following figure.

Group – E

8. Construct a circuit using PROM type PLD that represents a function Y=2X²-X, where X may vary from 0 to 7.

12

12

- 9. (a) Design a two input NOR gate using CMOS logic. Draw the switching diagram for all the possible input combinations.
 - (b) Draw and explain the general architecture of PLA structure.

6 + 6= 12

Department & Section	Submission Link (for Backlog)
CSE	https://classroom.google.com/c/MjkxMzkxNTUzMTly?cjc=azj2z7w