B.TECH/CSE/ECE/IT/3RD SEM/ECEN 2101/2020 **ANALOG CIRCUITS** (ECEN 2101)

Time Allotted: 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

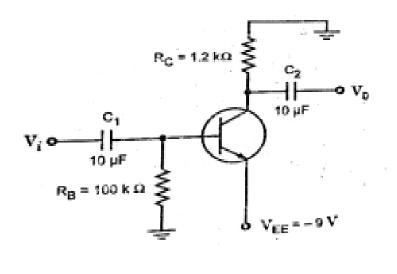
Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

> Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - (i) A circuit that can provide DC shift to any given signal is called (a) clipper (b) clamper (c) amplifier (d) oscillator.
 - (ii) The dynamic resistance of a p-n junction diode is (a) directly proportional to the dc diode current.
 - (b) inversely proportional to the dc diode current.
 - (c) directly proportional to the ac diode current.
 - (d) inversely proportional to the ac diode current.
 - The maximum theoretical efficiency of a class B push-pull transistor (iii) amplifier is approximately (a) 25% (b) 50% (c) 70.7% (d) 78.5%.
 - In a phase shift oscillator, we use _____ RC sections in the feedback (iv) path. (a) two (b)three (d)five. (c) four
 - Which one of the following is not applicable for ideal OPAMP? (v)(a) Infinite voltage gain (b) Infinite input impedance (c) Infinite output impedance (d) Infinite slew rate.
 - (vi) If three cascaded stages of amplifier have gains 10, 20, 30 the overall gain will be (d)6000.
 - (a) 200 (b)400 (c)1200

ECEN 2101


B.TECH /C	SE/ECE/IT /3 RD SEM/ECEN 2101/2020	
(vii)	Which of the following biasing circuit (a) fixed bias circuit (c) collector to base bias circuit	t is prone to thermal runaway? (b) self bias circuit (d) all of the above.
(viii)	An astable multivibrator generates (a) triangular waveform (c) square waveform	(b) sinusoidal waveform (d) none of these.
(ix)	CMRR of an op-amp expresses its abi (a) suppress the noise voltage (b) increase the frequency bandwidth (c) make the signal less distorted (d) decreases the gain.	5
(x)	Differential mode voltage gain of a d amplifier with load resistance RL is (a) R _L / r _e	ual input dual output differential (b) R _L * r _e

(c) $R_L / 2r_e$

(b) $R_L \uparrow r_e$ (d) $R_L * 2r_e$.

Group - B

- Derive an expression for the stability factor, 'S' for Self-bias circuit. 2. (a)
 - (b) and VC for the following circuit, Determine VB where β = 45, V_{BE}=0.7 V.

6 + 6 = 12

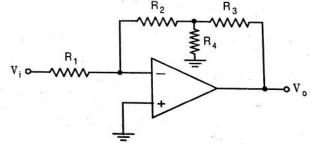
- 3. (a) Explain the operating principle of a double diode parallel clipper circuit with sinusoidal input voltage and no load.
 - (b) Describe the voltage divider biasing circuit for npn BJT and explain how it provides compensation against any change in the collector current.

5 + 7 = 12

B.TECH /CSE/ECE/IT /3RD SEM/ECEN 2101/2020

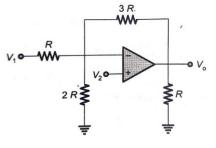
Group – C

- 4. (a) Draw the circuit diagram of a two-stage RC coupled CE transistor amplifier. Show how the magnitude and the phase angle of its voltage gain vary with frequency.
 - (b) What is the effect of negative feedback on the input impedance of voltage-series feedback amplifier?
 - (c) The total harmonic distortion of an amplifier reduces from 10% to 1% on the introduction of negative feedback. Determine the open loop and closed loop gain value.


6 +3 + 3= 12

- 5. (a) Sketch the circuit of Wien-bridge oscillator. Explain the principle of operation and write the expression for the frequency of oscillation.
 - (b) A Collpitt's oscillator is designed with C1=0.0001 μ F and C2=0.01 μ F. The inductance is variable. Determine the range of inductance value if the frequency of oscillation is to vary between 950 kHz to 2050 kHz.

6 + 6 = 12


Group – D

- 6. (a) Explain logarithmic amplifier with circuit diagram.
 - (b) Find the output voltage V_o of the following circuit.

6 + 6 = 12

- 7. (a) Describe instrumentation amplifier circuit using OPAMP.
 - (b) The problems of conventional half wave rectifier are solved using precision rectifier: explain with proper example.
 - (c) Assuming the OPAMP is ideal, if $V_1=1V$ and $V_2=2V$, find out the output voltage V_0 .

4 + 4 + 4 = 12

Group – E

- 8. (a) Derive the maximum efficiency of a class B push-pull amplifier. What is the major drawback of class B operation and how it can be avoided?
 - (b) A class B push pull power amplifier is supplied with V_{cc} =50 V. The signal swings the collector voltage down to V_{min} =5V. The total dissipation in both transistors is 40 W. Find the total power and conversion efficiency.

6 + 6 = 12

- 9. (a) Determine the frequency and duty cycle for 555 astable multi-vibrator output for C=0.01 μ F, R_A=2 k Ω and R_B=100 k Ω .
 - (b) Explain how a 555 timer can be used to generate a square wave. Also derive the expression of time period of the generated square wave.

5 + 7 = 12

Department & Section	Submission Link
CSE A	https://classroom.google.com/w/MTI2NTc4OTI5ODA5/tc/MjkxNDMzNjE0Mzk4
CSE B	https://classroom.google.com/w/MjQxNTYyNDlxOTg2/tc/MjkxNDQ1Mzc5OTY3
CSE C	https://classroom.google.com/u/0/w/MTlyMTgxOTQ1ODcy/tc/MjkyNzA0MzU2ODM2
ECE A	https://classroom.google.com/u/0/w/MTQ3NDU3NzI5OTA1/tc/Mjg0NTE1ODYxMDYx
ECE B	https://classroom.google.com/c/OTM1NTc5Nzc2NjFa/a/MjkxNDM4MTk2Mjg0/details
ECE C	https://classroom.google.com/w/MTE4MjMxNDE1NDA3/tc/MjkxNDMxNTcwMTU3
IT	https://classroom.google.com/c/MTlyNDlwNDQ5OTY1/a/Mjg2MjczOTczOTY2/details

Department & Section	Submission Link (Backlog)
CSE	https://classroom.google.com/c/Mjc0NDE2NDY5Mjc2?cjc=dum3unb
ECE	https://classroom.google.com/c/MjkxNDc3ODE1NjM1?cjc=daoqttm
IT	https://classroom.google.com/c/MjczMDI1OTA5Nzg4?cjc=7viim4k