B.TECH/ BT/CE/CHE/EE/ME /1st SEM/ECEN 1001 (BACKLOG)/2020 BASIC ELECTRONICS ENGINEERING (ECEN 1001)

Time Allotted: 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: **10** × **1** = **10**
 - (i) Avalanche breakdown is primarily dependent on the phenomenon of
 (a) Collision
 (b) Doping
 (c) Ionization
 (d) Recombination.
 - (ii) In an intrinsic semiconductor, the number of electrons is equal to the number of holes at which temperature?
 (a) 0K
 (b) 0⁰
 - (c) high temperature (d) all temperature.
 - (iii) Silicon diodes are less suited for low voltage rectifier operation
 - (a) cannot withstand high temperature
 - (b) reverse saturation current is low
 - (c) cutin voltage is high
 - (d) breakdown voltage is high.
 - (iv) The current *I_{CBO}* flows in the
 (a) emitter and base leads
 (b) collector and base leads
 (c) emitter and collector leads
 (d) none of these.
 - (v) Mobility of electrons in N-channel JFET and mobility of holes P-channel JFET are
 (a) large, poor
 (b) poor,large
 (c) large, large
 (d) poor,poor.

B.TECH/B	Г/CE/CHE/EE/ME/	1 ST SEM/ECEN 1001 (BA	ACKLOG)/2020		
(vi)	The effective channel length of a MOSFET in saturation decreases with increase in				
	(a) gate voltage	e	(b) drain v	voltage	
	(c) source volt	age	(d) body v	voltage.	
(vii)	An operational amplifier is basically a (a) low gain ac amplifier (b) high gain dc amplifier (c) high gain RC coupled amplifier (d) low gain transformer-coupled amplifier.				
(viii)	For a step input, the output of an integrator is				
	(a) a pulse (c) a spike		(b) a triang (d) a ramp.	(b) a triangular waveform (d) a ramp.	
(ix)	An oscillator whose frequency is changed by a variable dc voltage, is known as				
	(a) a crystal os	cillator	(b) a VCO		
	(c) an Armstrong oscillator		(d) a piezoe	(d) a piezoelectric device.	
(x)	The feedback in emitter follower is				
	(a) 50%	(b) 100%	(c)0%	(d) 0.1%.	

Group - B

- 2. (a) What is the basic difference among metal, insulator and semiconductor?
 - (b) Plot the Fermi-Dirac probability function at 0K and 300K for Intrinsic and N type extrinsic semiconductor.

(c) Calculate the density of impurity atoms that must be added to an intrinsic silicon crystal to convert it to (i) 10⁻⁴ ohm-m N type silicon, (ii) 10^{-4} 10⁻⁴ ohm-m P type silicon. The electron and hole mobility for silicon are $\mu_e = 0.138m^2 / volt - sec$ and $\mu_h = 0.046m^2 / volt - sec$. 3 + 5 + 4 = 12

- 3. (a) What are the difference between avalanche breakdown and zener breakdown?
 - (b) Explain with a circuit diagram the use of a zener diode as a reference diode.
 - (c) Explain the operation of a full wave rectifier with the help of a circuit diagram.

ECEN 1001

Group – C

- 4. (a) The metal lead of the p-side of a p-n diode is soldered to the metal lead of the p-side of another p-n diode. Will the structure from an n-p-n transistor? Why?
 - (b) Explain the operation of NPN transistor in CB configuration with proper circuit diagram. What is early effect?
 - (c) The collector leakage current in a transistor is $300 \mu A$ in CE arrangement. If the transistor is now connected in CB arrangement, what will be the leakage current? Given that $\beta = 100$.

2 + (5 + 2) + 3 = 12

- 5. (a) What are the factors that affect the bias stability of a transistor? What is thermal runway in transistor amplifier circuit?
 - (b) Establish the relationship between α and β .
 - (c) The reverse saturation current in NPN transistor in common base configuration is 15.5 μ A. For an emitter current of 4 mA, collector current is 2.47 mA. Find the value of current gain and base current.

(3+2) + 3 + 4 = 12

Group – D

- 6. (a) What is the significance of the term field-effect? Why the field effect transistor is called a unipolar transistor?
 - (b) Define the various parameters of a JFET. What is the relation between JFET parameters?
 - (c) An N Channel JFET has a pinch-off voltage of -4.5 v and I_{DSS} = 9mA. What is the value of V_{GS} and g_m for I_{DS} = 3mA?

(2+2) + (2+3) + 3 = 12

- 7. (a) When the channel of JFET is said to be pinched off? Explain the difference between enhancement and depletion type MOSFETs.
 - (b) Explain the basic construction of an enhancement type N-channel MOSFET. Draw and explain its static characteristics.

(2+2) + (4+4) = 12

B.TECH/BT/CE/CHE/EE/ME/1ST SEM/ECEN 1001 (BACKLOG)/2020

Group – E

- 8. (a) Define degenerative and regenerative feedback system. What are the possible topologies of a feedback amplifier?
 - (b) What is Barkhausen criterion for the feedback oscillator?
 - (c) An amplifier has a gain of 60 and distortion 10% without feedback. Determine (i) gain and (ii) distortion when negative feedback is applied, the feedback factor being 6.

(3+2)+3+4=12

- 9. (a) Explain the concept of virtual ground in an OPAMP. How is it different from a real ground?
 - (b) Describe the use of an op-amp as an integrator. Derive the input output relation. Draw appropriate input output waveforms.
 - (c) What is the maximum closed-loop voltage gain that can be used when the input signal varies by 0.5 V in 10 μ s, for an op-amp having slew rate (SR) =4v/ μ s?

4 + 5 + 3 = 12

Department & Section	Submission Link (for Backlog)
BT/CE/CHE/EE/ME	https://classroom.google.com/c/Mjg0NTM3NDc0NTk5?cjc=cmvcv3h