B.TECH/CE/5TH SEM/CIVL 3105 (BACKLOG)/2020

DESIGN OF R.C.C STRUCTURES (CIVL 3105)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choose the correct alternative for the following:				10 × 1 = 10	
	(i)	The maximum strain i (a) 0.002	n concrete at the ou (b) 0.003	iter most fibre is (c) 0.0035	(d) 0.0025.	
	(ii)	The factor of safety us (a) 1.5	ed for concrete is (b) 1.15	(c) 1.3	(d) 2.0.	
	(iii)	The acceptable limit o (a) Ultimate state (c) Limit state	f safety and servicea	ability before failure oc (b) Failure state (d) Working stat		
	(iv)	The maximum percen (a) 6%	tage of longitudinal (b) 8%	steel in a column is (c) 5%	(d) 7%.	
	(v)	The maximum strain i		c		
		(a) $\frac{f_y}{1.15 E_s} + 0.002$	(b) 0.002	(c) $\frac{f_y}{1.15 E_s} + 0.0035$	(d) 0.0035	
	(vi)	The moment of resistance of balanced section is (a) $0.87f_yA_{st}(d-0.36x_u)$ (c) $0.87f_{ck}A_{st}(d-0.4x_u)$		(b) $0.87 f_y A_{st}$ (b-0	s given by (b) $0.87 f_y A_{st}(b-0.36 x_u)$ (d) $0.87 f_y A_{st}(d-0.42 x_u)$.	
	(vii)	The nominal cover in a (a) 40mm	a column is (b) 50mm	(c) 35mm	(d) 30mm.	
	(viii)	For a balance section (a) $x_u = x_{u max}$	(b) $x_u > x_{u \max}$	(c) $x_u < x_{u \max}$	(d) $x_u \approx x_{u \max}$.	
	(ix)	As per IS 456-2000 min (a) 10 cm	nimum thickness at t (b) 15 cm	the edge of isolated foot (c) 20 cm	ings should be (d) 5 cm.	
	(x)	(c) Two-way shear (d) Torsion.		(b) One-way she (d) Torsion.	ear	

B.TECH/CE/5TH SEM/CIVL 3105 (BACKLOG)/2020

Group – B

- 2. (a) (i) State the assumptions of limit state of collapse (Flexure).
 - (ii) Differentiate between working stress method and limit state method.
 - (b) Find the moment of resistance of an R.C.C beam 325 mm wide and 525 mm effective depth is reinforced with 3 bars of 16 mm. Use M20 concrete and Fe415 steel. Use the working stress method of design.

(3+3)+6=12

- 3. (a) What is balanced, under reinforced and over reinforced section? Explain with a schematic diagram.
 - (b) A simply supported RCC beam of 250 mm × 500 mm has a clear span of 5.5m. The beam has 2-20 mm diameter bars going into the support. Factored shear force is 140KN. Check for development length if Fe 415 and M20 grade of concrete is used.

6 + 6 = 12

Group – C

- 4. (a) A doubly reinforced concrete beam constructed with M20 concrete and Fe415 steel has 250 mm width and 450 mm effective depth. The beam section has 2 bars of 12mm diameter in compression face with an effective cover of 40 mm and 4 bars of 20 mm diameter in tensile face respectively. Determine the flexural strength of the beam section according to IS:456-2000.
 - (b) Find the Moment of resistance of a T- beam section having the following details: $b_f = 700$ mm, d = 350 mm, $b_w = 250$ mm, $A_{st} = 5$ bars of 20mm diameter (Fe-415), $D_f = 100$ mm, M20 grade of concrete.

7 + 5 = 12

- 5. (a) Differentiate between the one-way slab and two-way slab.
 - (b) A simply supported slab of a corridor of a hospital building has a clear span of 2.5m and is supported on beams 230 mm in width. Design the slab if the slab is carrying a live load of 5kN/m². Use M20 concrete and Fe415 steel bars.

2 + 10 = 12

Group – D

6. Design a dog-legged staircase for an office building in a room measuring 3.0m × 6.0m (Clear dimension). Floor to floor height is 3.5m. The building is a public building liable to over-crowding. Stairs are supported on brick walls of 230mm thick at the end of landings. Use M20 concrete and Fe415 steel.

12

7. (a) Find the ultimate load-carrying capacity and allowable load for a short column of size 450 mm × 450 mm. The column is reinforced with 4-25mm diameter bars. Use M20 concrete and HYSD grade Fe415 steel Assume e_{min} <0.05D.</p>

B.TECH/CE/5TH SEM/CIVL 3105 (BACKLOG)/2020

(b) An R.C.C. short column of size 400×500 mm is carrying a factored load of 2900 kN. Design the column using design chart. Assume $e_{min} < 0.05D$. Use M25 concrete and Fe 415 steel.

5 + 7 = 12

Group – E

8. Design a square R.C.C footing for a column of 425 mm × 425 mm subjected to a load of 1100 kN and a uniaxial bending moment of 450 kN-m at service state. Unit weight of soil = γ_s =19kN/m³. The angle of repose = ϕ =30°. Safe bearing capacity of soil q= 150 kN/m² at a depth of 1.5 m. Use M20 concrete and Fe415 steel.

12

- 9. Design Pre-cast pile to carry an R.C.C column with axial load 1200kN.
 - Uniaxial moment=75kN-m
 - Shear Force= 70kN Field investigation-
 - Soil=medium sand
 - The angle of repose $\varphi = 30^{\circ}$
 - K=1.25
 - Unit weight $\gamma = 19.5$ kN/m³
 - Permanent surcharge $q_0 = 24$ kN/m²

Use M20 concrete and Fe 415 steel.

12

Department & Section	Submission link:
CE	https://classroom.google.com/w/MjQ0Mzk1MzU3MTA2/t/all