B.TECH/CHE/5TH SEM/CHEN 3102(BACKLOG)/2020

CHEMICAL REACTION ENGINEERING (CHEN 3102)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

10 × 1 = 10

- (i) For the reaction NO + $\frac{1}{2}$ O₂ = NO₂ carried out in presence of Pt-Rh catalyst, the reaction (a) is considered as homogeneous
 - (b) is considered as heterogeneous
 - (c) may be either homogeneous or heterogeneous
 - (d) none of the above.

(ii) The units of frequency factor in Arrhenius equation

- (a) is same as that of the rate constant
- (b) is different from the units of the rate constant
- (c) is unitless
- (d) none of the above.
- (iii) A given reaction is much more temperature sensitive at
 (a) low temperature
 (b) high temperature
 (c) all temperature levels
 (d) none of the above.
- (iv) The Decade method is used to simplify the calculations in connection with determination of slope of equation plotted in _____ graph paper
 (a) Triangular
 (b) Log-Log
 (c) Semi-log
 (d) Normal rectangular
- (v) The order of a Chemical Reaction cannot be
 (a) zero
 (b) fraction
 (c) negative
 (d) an integer.
- (vi) 1 liter / sec of gaseous reactant A is introduced into a mixed flow reactor having volume 4 liters. The stoichiometry is A \rightarrow 3R. The conversion is 50%, and under these conditions the residence time is

(a) 1 sec (b) 2 sec (c) $\frac{1}{2}$ sec (d) None of the above.

CHEN 3102

B.TECH/CHE/5TH SEM/CHEN 3102(BACKLOG)/2020

- (vii) For reaction under pore diffusion regime, the reaction rate:
 - (a) varies directly with catalyst particle size
 - (b) varies inversely with catalyst particle size
 - (c) is independent of catalyst particle size
 - (d) none of the above
- (viii) The third moment of RTD refers to (a) mean residence time
- (b) variance

(c) skewness

(d) space time.

- (ix) Reaction Invariants are
 - (a) constants
 - (b) state variables which are not affected by reaction
 - (c) path variables
 - (d) none of the above.
- (x) For Interpretation of Batch Reactor Data the Initial Rate Method of Analysis is a modification of
 - (a) Integral Method
 - (c) Half Life Method

- (b) Differential Method
- (d) Flooding Method.

Group – B

2. (a) Under the influence of oxidizing agents hypophosphorous acid is transferred into phosphorous acid:

 $H_3PO_2 \rightarrow H_3PO_3$

The kinetics of this transformation present the following features.

At low concentration of oxidizing agent

 $r_{H3PO3} = k[oxidizing agent] [H_3PO_2]$

At high concentration of oxidizing agent

 $r_{H3PO3} = k/[H^+] [H_3PO_2]$

To explain the observed kinetics, it has been postulated that with hydrogen ion as catalyst normal unreactive H₃PO₂ is transferred into an active form, the nature of which is unknown. This intermediate then reacts with the oxidizing agent to give H3PO₃. Show that this scheme does explain the observed kinetics.

(b) The pyrolysis of ethane proceeds with an active energy of about 300 kJ /mol. How much faster is the decomposition at 650°C than at 500°C?

8 + 4 = 12

- 3. (a) Prove that for a 2nd order irreversible bimolecular reaction, A+2B \rightarrow Products $\ln \frac{M - 2X_A}{M(1 - X_A)} = C_{AO}(M-2)kt$ where, M = C_{BO}/C_{AO} & M# 2 (Symbols stand for usual notations).
 - (b) For the reactions in series, $A \xrightarrow{k_1} R \xrightarrow{k_2} S$, $k_1 = k_2$, Find the maximum concentration of R and when it is reached.

6 + 6 = 12

B.TECH/CHE/5TH SEM/CHEN 3102(BACKLOG)/2020 Group – C

4. (a) We are planning to operate a batch reactor to convert A into R. This is a liquid reaction, the stoichiometry is $A \rightarrow R$, and the rate of reaction is given in the following table. How long must we react each batch for the concentration to drop from $C_A = 1.3$ mol /liter to $C_{Af} = 0.3$ mol / liter? Data:

C _A mol /liter	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	1.0	1.3
- r _A , mol / liter. min	0.1	0.3	0.5	0.6	0.5	0.25	0.10	0.06	0.05	0.045

(b) A high molecular weight hydrocarbon gas A is fed continuously to a heated high temperature mixed flow reactor where it thermally cracks (homogeneous gas reaction) into lower molecular weight materials, collectively called R, by a stoichiometry approximated by A -5R. By changing the feed rate different extents of cracking are obtained as follows:

F _{A0} , millimol/hr	300	1000	3000	5000
C _{Aout.} Millimol / liter	16	30	50	60

The internal void volume of the reactor is V = 0.1 liter, and at the temperature of the reactor the feed concentration is $C_{A0} = 100$ millimol/liter. Find a rate equation to represent the cracking reaction.

6 + 6 = 12

12

5. The homogeneous reaction A = R is be carried out in a flow reactor system has the following rate law,

$$-\Gamma_{\mathsf{A}} = \frac{kC_A}{\left(1 + K_A C_A\right)^2}$$

Where $k = 1 \text{ min}^{-1}$ and $K_A = 1 \text{ dm}^3/\text{min}$

The entering concentration of A is 2 mol/dm³. What type of reactor or combination of reactors would have the smallest volume to achieve 80% conversion? What will be the volume of each reactor if the initial flow rate of A is 200 mol/min.

Group – D

- 6. (a) A 20 liter MFR is to treat a reactant which decomposes as follows
 - $A \rightarrow R$, $r_R = 4hr^{-1}C_A$

 $A \rightarrow S$, $r_S = 1hr^{-1}C_A$

Find the feed rate and conversion of reactant so as to maximize profits. What are these on an hourly basis?

*Data;*Feed material A costs 1/mol at C_{A0} = 1 mol/lit, product R sells for 5/mol and s has no value. The total operating cost of reactant and product separation equipment is 25/hr + 1.25/mol A feed to the reactor. Unconverted A is not recycled.

B.TECH/CHE/5TH SEM/CHEN 3102(BACKLOG)/2020

(b) A and B react with each other as follows: $2A \rightarrow R$, $r_R = k_1C_A^2$ $A + B \rightarrow S$, $r_S = k_2C_AC_B$ $2B \rightarrow T$, $r_T = k_3C_B^2$ What ratio of A and B should be maintained in a mixed flow reactor so as to maximize the fractional yield of desired product S?

6 + 6 = 12

7. (a) The catalytic reaction

 $A \rightarrow 4R$

is studied in a plug flow reactor using various amounts of catalyst and 20 liters/hr of pure A feed at 3.2 atm and 117°C. The concentrations of A in the effluent stream are recorded for the various runs as follows.

Run	1	2	3	4
Catalyst used,kg	0.020	0.040	0.080	0.160
C _{Aout} , mol/liter	0.074	0.060	0.044	0.029

Find the rate equation for this reaction.

(b) Prove that for reaction under strong pore diffusion control regime

$$\eta = \frac{\tanh q}{\phi}$$

Where η = Effectiveness factor and ϕ = hiele modulus

6 + 6 = 12

Group – E

8. Deduce a suitable RTD zero parameter model of a PFR.

12

9. Show for a One parameter Tank-in Series (RTD) model, the variance decreases as the number of tanks increases.

12

Department & Section	Submission Link
CHE	https://classroom.google.com/c/MTQzMjU0NzQ1Nzg1/a/MjcxNDQzMjI2ODk1/ details