B.TECH/BT/5TH SEM/BIOT 3104/2020

TRANSFER OPERATION-II (BIOT 3104)

Time Allotted : 3 hrs

(i)

Full Marks: 70

 $10 \times 1 = 10$

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- Choose the correct alternative for the following: 1.
 - As the reflux ratio in a distillation coloumn is increased from the minimum, the
 - (a) slope of the operating line in stripping section increases
 - (b) number of plates decreases very slowly first and then more and more rapidly
 - (c) total cost first decreases
 - (d) liquid flow increases while the vapor flow decreases for a system.
 - (ii) With increase in pressure, the relative volatility for a binary system
 - (a) increases
 - (b) decreases
 - (c) remains same
 - (d) either (a) or (b), depends on the system.
 - Diffusion coefficient in a binary gas mixture at low pressure varies (iii) (a) Directly with P (b) Inversely with P (c) Directly with P² (d) Independent of P.
 - Molecular diffusion induced by temperature is (iv)(a) eddy diffusion (b) thermal diffusion (c) forced diffusion (d) none of the above.
 - (v) Diffusivity of a binary gas mixture is 2.83×10⁻⁵ m²/s at 300K. What will be the approximate value of the diffusivity at 600K? (a) 1.43 ×10⁻5m²/s (b) $8 \times 10^{-5} \text{m}^2/\text{s}$ (c) 5.66 ×10-5m²/s (d) 1.68 ×10⁻5m²/s.
 - For steady state diffusion of A through stagnant B, $N_A/(N_A+N_B)$ is (vi)(a) 0. (b) 1 (d) ∞.
 - (c) ½

B.TECH/BT/5TH SEM/BIOT 3104/2020

- (vii) In absorption minimum operating line
 - (a) touches the equilibrium line
 - (b) has a slope of (L/V)min
 - (c) shows the maximum possible liquid concentration
 - (d) All the above.

(viii)	Which of the following is not a	n application of ultrafiltration?
	(a)concentration	(b) purification
	(c) diafiltration	(d) dialysis.

- (ix) Packed columns are

 (a) differential contact plant
 (b) stage contact plant
 (c) gas-liquid contact plant
 (d) solid-liquid contact plant.
- (x) The absorption factor is defined as

 (a) L/mV
 (b) mL/V
 (c) V/mL
 (d) LV/m.

Group – B

- 2. (a) Prove that $D_{AB} = D_{BA}$ for a gas.
 - (b) Water at 293K and 101.3kPa is contained in a narrow vertical tube. The level of liquid is maintained 150mm below the open end, across which air with a humidity of 0.002kg water/kg dry air is passed at 293K and 101.3KPa. If the diffusivity of water vapour in air is 2.5×10⁻⁵m²/s, and the vapour pressure of water is 2.34KPa, calculate the rate of evaporation of water. What will be the rate of evaporation if dry air is passed over the tube?

5 + 7 = 12

- 3. (a) CO₂ and O₂ experience equimolal counter diffusion in a circular tube whose length and diameter are 1m and 50mm respectively. The total pressure is 10atm and temperature is 25°C. The ends of the tube are connected to large chambers in which the species concentration are maintained at fixed values. The partial pressure of CO₂ at one end is 190mm of Hg and at the other end 95mm of Hg.
 - (i) Estimate the rate of mass transfer.
 - (ii) Find the partial pressure of CO₂ at 0.75m from the end where the partial pressure is 190mm of Hg. D_{AB} = 2.1×10⁻⁵m²/s.
 - (b) Derive a relationship between overall mass transfer coefficients and local mass transfer coefficients.
 - (c) What is the significance of varying the slope of the operating line in gas absorption?

7 + 3 + 2 = 12

B.TECH/BT/5TH SEM/BIOT 3104/2020

Group – C

- 4. A 70 Kmol/hr methnol –water mixture containing 42 mol% methanol is distilled (flash) at atmospheric pressure to yield a residue of 27 mol%.
 - (i) What is the composition of the distillate and how many moles of distillate and residue are obtained per hr?
 - (ii) What is the maximum possible methanol content of the distillate?

The equilibrium data for the given set of problem is:

<u> </u>		1		1				8 + 4
y	0.103	0.227	0.391	0.568	0.68	0.79	0.82	0.90
Х	0.0084	0.0258	0.068	0.137	0.24	0.48	0.57	0.74

- 5. (a) State the principle of Flash Distillation with diagram.
 - (b) Derive the operating line equation for Flash Distillation.
 - (c) Define relative volatility.

6 + 4 + 2= 12

Group – D

6. (a) Under the constant drying condition, a wet solid is dried from 30% to 4 % (on dry basis). The time taken is 4 hrs. The equilibrium moisture content is 2% (on dry basis). Critical moisture content is 10% (on dry basis). How long will it take to dry to 7% (on dry basis). Assume falling rate is linear. Use the following equation.

$$t = \frac{Ls}{A} \left[\frac{(X1 - Xc)}{Rc} + \frac{(Xc - X^*)}{Rc} \ln \frac{(Xc - X^*)}{(X2 - X^*)} \right]$$

(b) Derive the working formula for calculation of drying time under constant rate of drying.

8 + 4 = 12

- 7. An inlet water solution of 100 kg/hr containing 0.01 wt fraction nicotine in water is stripped with a kerosene stream of 200 kg/hr containing 0.0005 wt fraction nicotine in a countercurrent process. The water and kerosene are essentially immiscible with each other. It is desired to reduce the concentration of exit water to 0.0010 wt fraction nicotine.
 - (i) Determine the wt fraction of nicotine in exit kerosene stream.
 - (ii) Number of stages required for the process.

The equilibrium data is:

Х	0.001	0.00246	0.005	0.00746	0.00988	0.0202
у	0.000806	0.001959	0.00454	0.00682	0.00904	0.0185

Where , x is the weight fraction of nicotine in water solution Y is the weight fraction of nicotine in kerosene solution.

B.TECH/BT/5TH SEM/BIOT 3104/2020

Group – E

8. Experiments at 25°C were performed to determine the permeabilities of a celluloseacetate membrane. The laboratory test section shown in figure has membrane area $A= 2.00 \times 10^{-3} m^2$. The inlet feed solution concentration of NaCl is C₁=10.0kg NaCl/m³ solution (10.0g NaCl/L, ρ_1 = 1004 kg solution/m³). The water recovery is assumed low so that the concentration C₁ in the entering feed solution flowing past the membrane and the concentration of the exit feed solution are essentially equal. The product solution contains C₂ = 0.39 kg NaCl/m³ solution (ρ_2 = 997 kg solution/m³) and its measured flow rate is $1.92 \times 10^{-8} m^3$ solution/s. A pressure differential of 54.42 atm is used. Calculate the permeability constants of the membrane and the solute rejection R. (Given π =7.48 atm).

12

9. (a) In a cross flow ultra filtration system used for filtration of proteins from a fermentation broth, gel resistance increases with protein concentration according to the following equation:

 $R_G = 0.5+0.01C$, where C is in mg/L.

Pressure at the entrance system is $P_i = 6atm$ and at the exit is $P_0 = 2atm$. The shell side of the filter is open to the atmosphere, resulting in $P_f = 1atm$. The membrane resistance is $R_M = 0.5 \text{ atm}/(mg/m^2 \text{ .h})$, and the protein concentration in the broth is C = 100mg/L. Determine:

- (i) The pressure drop across the membrane
- (ii) Filtration flux
- (iii) Rejection coefficient of the membrane for effluent protein concentration of $C_i = 5 \text{mg/L}$.
- (b) Write a note on any one membrane separation process applied in biotechnology.

6 + 6 = 12

Department & Section	Submission Link
ВТ	https://classroom.google.com/c/MjQyMDU4ODMyNjY2/a/Mjc1OTEyMjE1Nj Ey/details