TRANSFER OPERATION II (BIOT 3104)

Time Allotted : 3 hrs

Full Marks: 70

 $10 \times 1 = 10$

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- Choose the correct alternative for the following: 1.
 - (i) The process of heating a liquid mixture to form vapours and then cooling the vapours to get pure component is called ____ (b) Distillation (a) Crystallisation
 - (c) Chromatography

- (d) Sublimation
- (ii) For estimating the drier size it is necessary to know _____ (a) Time of drying (b) Heat of drying (d) All of the mentioned (c) Speed of drying
- (iii) Which of the following is not an adsorbent? (a) Carbon (b) Polymers and resins (c) Clay (d) Dry sponge.
- Solvent extraction is more effective when the extraction is repeated with (iv)(a) Extra solvent (b) Large solvent (d) No solvent. (c) Small solvent
- (v) With increase in pressure, the relative volatility for a binary system (a) increases
 - (b) decreases
 - (c) remains same
 - (d) either (a) or (b), depends on the system.
- (vi)The solubility of a gas in a liquid generally
 - (a) Increases with temperature
 - (b) Decreases with temperature
 - (c) Decreases with pressure
 - (d) Not affected by temperature and pressure.

- NTU = the number of theoretical stages when (vii)
 - (a) The operating line and the equilibrium line are straight and parallel
 - (b) The operating line and the equilibrium line intersect each other
 - (c) The minimum operating line is parallel to equilibrium line
 - (d) None of the above.
- Which of the following is not a membrane separation process? (viii)
 - (a) Reverse osmosis (b) Diffusion (d) Dialysis.
 - (c) Ultrafiltration
- (ix)Concentration polarization occurs when
 - (a) Concentration of the solute (C_M) is more on the membrane surface than in the bulk feed solution(C_B)
 - (b) $C_M < C_B$
 - (c) $C_M = C_B$
 - (d) None of the above.
- (x) The driving force for molecular diffusion is
 - (a) Temperature gradient
 - (c) EMF

- (b) Concentration gradient
- (d) None of the above.

Group – B

- 2. Derive an expression for diffusivity in a pseudo-steady state one way diffusion (a) process.
 - (b) Prove that $D_{AB} = D_{BA}$.

6 + 6 = 12

3. A tray tower is to be designed to absorb SO₂ from an air stream by using pure water at 293K. The entering gas contains 20 mol% SO₂ and that leaving 2 mol% at a total pressure of 101.3 kPa. The inert air flow rate is 150 kg air/h.m², and the entering water flow rate is 6000 kg water/h.m². Assuming an overall tray efficiency of 25%, how many theoretical trays are needed? What should be the number of trays actually to be employed? Assume the tower to operate at 293K and equilibrium relationship is given by $y^* = 20x$

12

Group – C

- 4. An enriching column is fed with a feed consisting of 40 mol% benzene and 60 mol% toluene at 101.3 KPa. The feed enters at a rate 100 kmol/hr as a saturated vapour and it is desired to produce a distillate containing 90 mol% benzene. Assume that a total condenser is used and reflux ratio is 4.0 mol per mol of distillate. Determine:
 - Molar rate of production of distillate and residue. (i)
 - (ii) Composition of residue
 - (iii) Number of theoretical plates.

Equilibrium Data:

>	(0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.95	1
7	/ 0	0.205	0.369	0.502	0.618	0.706	0.789	0.849	0.907	0.955	0.978	1

3 + 3 + 6 = 12

6 + 4 + 2 = 12

- 5. (a) State the principle of Batch Distillation with diagram.
 - (b) Derive the Rayleigh equation for Batch Distillation.
 - (c) Define relative volatility.

Group – D

- 6. (a) Derive the working formula for calculation of drying time under constant rate of drying.
 - (b) Explain the primary and secondary nucleation theory for crystallisation.
 - (c) Describe the liquid- liquid extraction process . State two major application of extraction.

4 + 4 + (2 + 2) = 12

- 7. (a) State the equation and assumptions of Langmuir isotherm for adsorption.
 - (b) What is extraction factor? How is this parameter related to composition of inflow solution and composition of raffinate?

6 + (2 + 4) = 12

Group – E

- 8. Write short notes on:
 - (i) Electrodialysis
 - (ii) Reverse osmosis.

6 + 6 = 12

9. In a cross flow ultra filtration system used for filtration of proteins from a fermentation broth, gel resistance increases with protein concentration according to the following equation:

 $R_G = 0.5+0.01C$, where C is in mg/L.

Pressure at the entrance system is P_i =6atm and at the exit is P_0 = 2atm. The shell side of the filter is open to the atmosphere, resulting in P_f =1atm. The membrane resistance is R_M = 0.5 atm/(mg/m² .h), and the protein concentration in the broth is C= 100mg/L. Determine:

- (i) The pressure drop across the membrane
- (ii) Filtration flux
- (iii) Rejection coefficient of the membrane for effluent protein concentration of $C_i = 5 \text{ mg/L}$.

4 + 4 + 4 = 12

Department & Section	Submission Link					
ВТ	https://classroom.google.com/c/Mjc4ODUxMzE0OTc3/a/Mjc1OTEyMjE1NDY4/details					