B.TECH/BT/3RD SEM/BIOT 2103(BACKLOG)/2020

BIOCHEMISTRY (BIOT 2103)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A (Multiple Choice Type Questions)

(Multiple Choice Type Questions)								
Choo	Choose the correct alternative for the following:							
(i)	The cofactors of pyruvate dehydrogenase (a) Folate and TPP (c) NADH and Nicotinic acid	e complex are: (b) FAD and NAD+ (d) all of these						
(ii)	The regulation of glycolytic pathway invo (a) Allosteric stimulation by ADP (c) Feed back inhibition by ATP	olves: (b) Allosteric inhibition (d) All of these	n by ATP					
(iii)	Allosteric enzymes are (a) Larger than simple enzyme (b) Smaller than simple enzyme (c) Larger and more complex than simple (d) Smaller and less complex than simple	_						
(iv)	The net gain of ATP molecules resulting f (a) 2 (c) 38	from glycolysis is (b) 4 (d) 32						
(v)	The metabolite that finally enters TCA cy (a) Pyruvate (c) Acetyl CoA	cle is (b) Ethanol (d) Lactate						
(vi)	The coenzyme involved in transfer of ace (a) NADH (c) S-adenosyl methionine	tyl group (b) Coenzyme A (d) Biotin						

BIOT 2103 1

1.

B.TECH/BT/3RD SEM/BIOT 2103(BACKLOG)/2020

- (vii) The two key enzymes of gyoxalate cycle are
 - (a) Isocitrate lyase and isocitrate dehydrogenase
 - (b) α keto gluterate dehydrogenase and isocitrate dehydrogenase
 - (c) Iso citrate lyase and malate dehydrogenase
 - (d) Isocitrate lyase and malate synthase
- (viii) In the signal transduction mechanism known as protein phosphorylation
 - (a) The signaling molecule binds to a surface receptor
 - (b) Receptor kinases play a key role in triggering the signal cascade
 - (c) Phosphorylated proteins act with enzymes to trigger the signal cascade
 - (d) All of the above
- (ix) Aspartate is deaminated to produce
 - (a) pyruvic acid

(b) citric acid

(c) oxalic acid

(d) fumeric acid

- (x) β -oxidation takes place in:
 - (a) Mitochondria

(b) Cytoplasm

(c) Chloroplast

(d) Nucleus

Group - B

- 2. (a) Discuss with a flow chart the preparatory phase of glycolysis. Why this is called a preparatory phase?
 - (b) In the synthesis of glucose in liver, how this phase operates?
 - (c) Write short notes on: Lock and key model for enzyme activity.

$$(2+2)+4+4=12$$

- 3. (a) Draw the TCA cycle with structure of all intermediates mentioning all enzymes and cofactors.
 - (b) Classify enzymes in six different categories with example.

8 + 4 = 12

Group - C

- 4. (a) What are the functions of carrier proteins for hormones?
 - (b) Outline the mechanism of action of hydrophilic hormones with receptors in target cells.
 - (c) Using a flow-chart, explain how negative feedback mechanism regulates hormone secretion.

4 + 4 + 4 = 12

5. (a) How α -oxidation of fatty acids occurs?

B.TECH/BT/3RD SEM/BIOT 2103(BACKLOG)/2020

- (b) Explain the process of Ketogenesis.
- (c) What are micronutrients? Describe what happens in presence of too much or too little of Vitamin D.

$$4 + 4 + (2 + 2) = 12$$

Group - D

- 6. (a) Describe with a suitable example the transammination reaction. Discuss the role of vitamin B₆ in transammination.
 - (b) Discuss the catabolism of any one glucogenic amino acid.

$$(4+3)+5=12$$

- 7. (a) Describe the breakdown of purines.
 - (b) Discuss the synthesis of: GABA and Dopamine.

$$6 + (3 + 3) = 12$$

Group - E

- 8. (a) What is the major difference between primary and secondary messengers?
 - (b) Describe the β adrenergic pathway and how epinephrine is desensitized?
 - (c) Discuss about ligand gated ion channels.

$$4 + 4 + 4 = 12$$

- 9. (a) Describe the different molecular mechanisms (characteristic) of ligand-receptor signalling.
 - (b) Describe with the help of a diagram G-protein mediated signalling cascade.
 - (c) Write down the JAK-STAT pathway with the help of a diagram.

$$4 + 4 + 4 = 12$$

Department & Section		Submission Link	
	ВТ	https://classroom.google.com/c/MTIyNDA00DI4OTgz/a/Mjg2NjU1OTkyOTA4/details	