MATHEMATICS - I (MATH 1101)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

Choo	se the correct altern	native for the followi	ing:	10 × 1 = 10
(i)	If <i>A</i> is a square matr (a) skew symmetric (c) orthogonal	ix, then $A + A^T$ is		
(ii)	Let $r(A)$ denote the rank of a matrix A . If all minors of a matrix A of order $r + 1$ are zero, then			
	(a) $r(A) \leq r$	(b) $r(A) = 0$	(c) $r(A) > r$	(d) $r(A) = 1$.
(iii)	The series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ (a) converges to 0 (c) diverges to $-\infty$			
(iv)	(a) converges to 0.	i t	nded below	(b) diverges to −∞ (d) converges to 1.
(v)	A vector normal to the formula of t	he plane $x + 2y + 3z -$	(b) $\hat{\imath} + 2\hat{j} +$	-
(vi)	The particular integ	ral of $\frac{d^2y}{dx^2} + y = x^2$ is		
	(a) $x^2 - 2x + 2$ (c) $x^2 + 2$.		(b) $x^2 - 2$ (d) $x + 2$.	
(vii)	$\frac{xdy-y}{xy}$ is equal to			
	(a) $d\left\{\log\left(\frac{y}{x}\right)\right\}$		(b) $d \left\{ \log \left(\right) \right\}$	$\left(\frac{x}{y}\right)$
	(c) $d\left\{\frac{y}{x}\right\}$		(d) $d \{ tan \}$	$-1\left(\frac{y}{x}\right)$.
	(i) (ii) (iii) (iv) (v) (vi)	(i) If <i>A</i> is a square matr (a) skew symmetric (c) orthogonal (ii) Let $r(A)$ denote the are zero, then (a) $r(A) \leq r$ (iii) The series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ (a) converges to 0 (c) diverges to $-\infty$ (iv) The sequence $1 + \frac{(-1)^{2}}{\sqrt{n}}$ (a) converges to 0. (c) is monotonically (v) A vector normal to the (a) $2\hat{i} + \hat{j} + 3\hat{k}$ (c) $\hat{i} - 2\hat{j} - 3\hat{k}$ (vi) The particular integration (a) $x^{2} - 2x + 2$ (c) $x^{2} + 2$. (vii) $\frac{xdy-y}{xy}$ is equal to (a) $d\left\{\log\left(\frac{y}{x}\right)\right\}$	(i) If <i>A</i> is a square matrix, then $A + A^T$ is (a) skew symmetric (c) orthogonal (ii) Let $r(A)$ denote the rank of a matrix <i>A</i> . If a are zero, then (a) $r(A) \le r$ (b) $r(A) = 0$ (iii) The series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ (a) converges to 0 (c) diverges to $-\infty$ (iv) The sequence $1 + \frac{(-1)^n}{n}$, $n = 1, 2, 3, \infty$ (a) converges to 0. (c) is monotonically increasing and unbound (v) A vector normal to the plane $x + 2y + 3z - (a) 2\hat{i} + \hat{j} + 3\hat{k}$ (c) $\hat{i} - 2\hat{j} - 3\hat{k}$ (vi) The particular integral of $\frac{d^2y}{dx^2} + y = x^2$ is (a) $x^2 - 2x + 2$ (c) $x^2 + 2$. (vii) $\frac{xdy-y}{xy}$ is equal to (a) $d\left\{\log\left(\frac{y}{x}\right)\right\}$	(a) skew symmetric (b) symmetric (c) orthogonal (d) a unit metric (c) orthogonal (e) $r(A) = 0$ (c) $r(A) > r$ (iii) The series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ (a) converges to 0 (b) converges (c) diverges to $-\infty$ (d) diverged (e) diverges to $-\infty$ (d) diverged (e) diverges to 0. (c) is monotonically increasing and unbounded below (v) A vector normal to the plane $x + 2y + 3z - 1 = 0$ is (a) $2\hat{i} + \hat{j} + 3\hat{k}$ (b) $\hat{i} + 2\hat{j} + (c) \hat{i} - 2\hat{j} - 3\hat{k}$ (d) $\hat{i} + 2\hat{j} + (c) \hat{i} - 2\hat{j} - 3\hat{k}$ (d) $\hat{i} + 2\hat{j} - 2\hat{i}$ (vi) The particular integral of $\frac{d^2y}{dx^2} + y = x^2$ is (a) $x^2 - 2x + 2$ (b) $x^2 - 2$ (c) $x^2 + 2$. (d) $x + 2$. (vii) $\frac{xdy-y}{xy}$ is equal to (a) $d\left\{\log\left(\frac{y}{x}\right)\right\}$ (b) $d\left\{\log\left(\frac{y}{x}\right)\right\}$

MATH 1101

B.TECH/AEIE/BT/CE/CHE/CSBS/CSE/ECE/EE/IT/ME/1st SEM/MATH 1101/2020

(viii) The integrating factor of the equation $\frac{dy}{dx} + 2xy = x^3$ is (a) x^2 (b) e^{x^2} (c) x^3 (d) e^{2x} .

- (ix) $\int_{-a}^{a} \int_{-b}^{b} dx dy$ is equal to (a) 2a (b) 2b (c) ab (d) 4ab.
- (x) The order of the homogeneous function $\sin(\frac{y}{x}) + tan^{-1}(\frac{y}{x})$ is (a) 1 (b) -1 (c) 0 (d) 2.

Group – B

- 2. (a) Reduce the matrix *A* to row-reduced echelon form and hence find its rank, where $A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$.
 - (b) Investigate the solution of the system of linear equations

$$2y + 4z + 5 = 0,$$

$$8x - y + 4z = 12,$$

$$16x - y + 10z = 1.$$

6 + 6 = 12

- 3. (a) Find the inverse of the matrix $A = \begin{bmatrix} 1 & 1 & 2 \\ 9 & 2 & 0 \\ 5 & 0 & 3 \end{bmatrix}$ using Cayley-Hamilton Theorem.
 - (b) Find the characteristic equation and the eigenvalues of the matrix $\begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$
 - (c) Prove that an orthogonal matrix is non-singular.

5 + 5 + 2 = 12

Group - C

- 4. (a) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{2^n+1}{3^n+2}$.
 - (b) Test the convergence of the alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^3}$.
- 5. (a) In what direction from the point (1,1,-1) is the directional derivative of $f(x, y, z) = x^2 2y^2 + 4z^2$ a maximum? What is the magnitude of this directional derivative?
 - (b) Find $div \vec{F}$ and $curl \vec{F}$ where $\vec{F} = grad(x^3 + y^3 + z^3 3xyz)$.

5 + 7 = 12

6 + 6 = 12

MATH 1101

B.TECH/AEIE/BT/CE/CHE/CSBS/CSE/ECE/EE/IT/ME/1st SEM/MATH 1101/2020 Group – D

6. (a) Show that the following equation is exact and solve it. $e^x \sin y \, dx + (e^x + 1) \cos y \, dy = 0.$

(b) Solve:
$$\frac{dy}{dx} + \frac{4x}{x^2+1}y = \frac{1}{(x^2+1)^3}$$
.

7. (a) Solve the following differential equation by the *D*-operator method. $\frac{d^2y}{dx^2} + 4y = x \cos x.$

(b) Solve: $x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - 3y = x^2 \log x$.

6 + 6 = 12

Group – E

8. (a) Show that the double limit does not exist as $(x, y) \rightarrow (0,0)$ for the function given by $f(x, y) = \frac{x^3 + y^3}{x - y}$

(b) If
$$u = tan^{-1} \frac{\sqrt{x^3 + y^3}}{\sqrt{x} + \sqrt{y}}$$
, then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin u \cos u$.
6 + 6 = 12

- 9. (a) Evaluate $\int_0^a \int_0^{\sqrt{a^2 y^2}} (x^2 + y^2) dx dy$ by changing to polar coordinates.
 - (b) Evaluate $\int_C (2x + y^2)dx + (3y 4x)dy$ where *C* denotes the triangle *PQR* formed by the points *P*(0,0), *Q*(2,0), *R*(2,1) traversed in the clockwise direction.

6 + 6 = 12

Department & Section	Submission Link		
AEIE	https://classroom.google.com/c/MjM1NDA1MTY0NzAw/a/Mjc0NDI50DY		
	<u>yNTQz/details</u>		
BT	https://classroom.google.com/c/MjM1NDAzMTkxMjYz/a/Mjc0NDI50DYy		
DI	<u>NjE2/details</u>		
CHE	https://classroom.google.com/c/MjMwNTc1NzQ2MTM4/a/Mjc0NTMwMj		
	<u>AxODIz/details</u>		
CE A	https://classroom.google.com/c/MjMwNTU40DM4MDA1/a/MjY00Dg4Mj		
CEA	<u>I4MDAx/details</u>		
CE B	https://classroom.google.com/c/MjMwNTY0MjI20Dcx/a/MjY00Dg4MjI4		
CEB	<u>MTkw/details</u>		
CSBS	https://classroom.google.com/c/MjMwNjk30DM1MDgy/a/Mjc0MDkxMD		
0.202	<u>Y4NDU3/details</u>		

MATH 1101

B.TECH/AEIE/BT/CE/CHE/CSBS/CSE/ECE/EE/IT/ME/1st SEM/MATH 1101/2020

Department & Section	Submission Link		
CSE A	https://classroom.google.com/c/MjMwOTkxNDQxNDgz/a/Mjc0MTQ1Nzg xMjI5/details		
CSE B	https://classroom.google.com/c/MjMwNTYxOTM3NjM5/a/Mjc0NDk3MzA wNzY4/details		
CSE C	https://classroom.google.com/c/MjMwNTYxOTM3NzQ2/a/Mjc0NDk3MzA wNjg2/details		
ECE A	https://classroom.google.com/c/MjMwMjAxNjkwMTY1/a/Mjc0MDc5MD MwOTU2/details		
ECE B	https://classroom.google.com/c/MjMwNDQ1MDY0MDg1/a/Mjc0MDc4MD k0MDEv/details		
ECE C	https://classroom.google.com/c/MjMxMDE1NjgyMjQ1/a/Mjc0NDQzNzI0 NzA0/details		
EE	https://classroom.google.com/c/MjMwNTc3NjcxNjY1/a/Mjc0NTMxMzAy ODA1/details		
ME A	https://classroom.google.com/c/MjMxMDA0NDMyODU0/a/Mjc0NDQzNzI <u>1NDc1/details</u>		
ME B	https://classroom.google.com/c/MjMwNjg5MjA3NTA3/a/Mjc0MDk3NTA 1MDQ4/details		
IT	https://classroom.google.com/c/MjA3NTA3NDA5NzM2/a/Mjc0MTUwNz <u>U1NTE4/details</u>		

Department & Section	Submission Link	
BACKLOG	https://classroom.google.com/c/MjA00Tk4NDc2MDI0/a/MjY1MjAxNzE2 <u>Mzgw/details</u>	