MATHEMATICS - I (MATH 1101)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

	•	J	,	•	
	(Mu	Group de Choice Ty			
Choose the correct alternative for the following:				$10 \times 1 = 10$	
(i)	If A be a square m (a) symmetric ma (c) skew-symmet) is (b) identity r (d) null matr		
(ii)) has rank one	
(iii)	If the vector fi solenoidal, then the (a) -5		$(xy^2 - xz^2)\hat{i} + (xy^2 - xz^2)\hat{j} + (a^2)\hat{i}$	(d) 0	
(iv)		following is a divergence (b) $\sum_{n=1}^{\infty} \frac{1}{n^2}$		(d) $\sum_{n=1}^{\infty} \frac{1}{2^n}$	
(v)		of $\frac{dx}{dy} + \frac{x}{y \log y} = \frac{2}{y}$ is (b) $\log x$	s (c) log <i>y</i>	(d) log(log <i>y</i>)	
(vi)	Which one of the following equation is exact differential equation? (a) $(x^2 + 1)dx - xydy = 0$ (b) $xdy + (3x - 2y)dx = 0$ (c) $2xydx + (2 + x^2)dy = 0$ (d) $x^2ydy - ydx = 0$				
(vii)	If $u = \sin^{-1}\left(\frac{x}{y}\right) + \cos^{-1}\left(\frac{y}{x}\right)$, then $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = ?$				
	(a) $\sin^{-1} \left(\frac{x}{y} \right) + \cos^{-1} \left(\frac{x}{y} \right) = \cos^{-1} \left(\frac{x}{y$	$\left(\frac{y}{x}\right)$	(b) $2\sin^{-1}\left(\frac{x}{y}\right)$		
	(c) 0		(d) $\cos^{-1}\left(\frac{y}{x}\right)$		

1.

B.TECH/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/1ST SEM/MATH 1101 (BACKLOG)/2020

(viii) If f(x, y) = 0 then $\frac{dy}{dx}$ is equal to

(a)
$$-\frac{f_x}{f_y}$$

(b)
$$\frac{f_x}{f_y}$$

(c)
$$\frac{f_y}{f_x}$$

(d) $-\frac{f_y}{f_x}$

(ix) The value of $\iint_R dx dy$, where R being the triangular region having vertices at (0,0),(2,0) and (1,1) is

(a) 0.5

(b) 1

(c) 0.2

(d) 0.3

(x) The series $\frac{1}{5} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} + \cdots$ is

- (a) convergent
- (c) oscillatory

- (b) divergent
- (d) conditionally convergent

Group - B

2. (a) Determine the rank of the matrix

$$\begin{bmatrix} 2 & -1 & 3 & 4 \\ 0 & 3 & 4 & 1 \\ 2 & 3 & 7 & 5 \\ 2 & 5 & 11 & 6 \end{bmatrix}$$

(b) Evaluate the following determinant by using Laplace's expansion taking minor of order two.

(c) If λ is a non-zero eigen value of a matrix, then show that $1/\lambda$ is an eigen value of A^{-1} .

$$4 + 5 + 3 = 12$$

3. (a) Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & -2 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & 2 \end{bmatrix}$. Hence find A^{-1} .

(b) Determine the values of a and b for which the system of equation

$$x + 2y + 3z = 6$$

$$x + 3y + 5z = 9$$

$$2x + 5y + az = b$$

has (i) no solution, (ii) unique solution, (iii) infinite number of solutions.

$$6 + 6 = 12$$

Group - C

4. (a) Test the convergence of the series: $1 + \frac{2}{5}x + \frac{6}{9}x^2 + \frac{14}{17}x^3 + \cdots + (x > 0)$

B.TECH/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/1ST SEM/MATH 1101 (BACKLOG)/2020

(b) Find the directional derivative of the scalar function $f(x,y,z) = x^2 + xy + z^2$ at the point A(1,-1,-1) in the direction of the line AB where B has co-ordinates (3,2,1).

6 + 6 = 12

- 5. (a) Test the convergence of the infinite series $\sum_{n=1}^{\infty} \frac{\cos n\pi}{n^2+1}$
 - (b) Find the equation of the tangent plane to the surface $4z = x^2 y^2$ at the point (3,1,2).
 - (c) Show that, if $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$, then $\nabla r^n = nr^{n-2}\vec{r}$ where n is a constant.

5 + 4 + 3 = 12

Group - D

- 6. (a) Obtain the differential equation of the family of parabolas each of which has a latus rectum 4a and whose axes are parallel to the x-axis.
 - (b) Solve the following differential equation by using the method of variation of parameter $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = \frac{1}{1+e^{-x}}$.

6 + 6 = 12

- 7. (a) Solve: $3x^4p^2 xp y = 0$
 - (b) Solve the following differential equation by using D- operator $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = xe^x \sin x$.

6 + 6 = 12

Group - E

- 8. (a) Verify Green's theorem in a plane for $\oint_C (y \sin x) dx + \cos x dy$, where C represents the triangle with vertices (0,0), $(\pi/2,0)$, $(\pi/2,2)$.
 - (b) Show that $\lim_{(x,y)\to(0,0)} \frac{x^2y^4}{(x^2+y^4)^2}$ does not exists.
 - (c) If x = uv, $y = \frac{u-v}{u+v}$, then find $\frac{\partial(u,v)}{\partial(x,y)}$.

6 + 3 + 3 = 12

- 9. (a) Change the order of integration $\int_0^1 \int_{x^2}^{2-x} xy \, dy \, dx$ and hence evaluate.
 - (b) If $u = (x^2 + y^2)^{2/3}$, prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{4}{9}u$.

6 + 6 = 12

B.TECH/AEIE/BT/CE/CHE/CSE/ECE/EE/IT/ME/1ST SEM/MATH 1101 (BACKLOG)/2020

Department & Section	Submission Link		
BACKLOG ALL	https://classroom.google.com/c/MjA00Tk4NDc2MDI0/a/MjY1MTk5Mjk wMTcx/details		