B.TECH/AEIE/5TH SEM/ AEIE 3132/2020

NON CONVENTIONAL ENERGY SOURCES (AEIE 3132)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choose the correct alternative for the following:				10 × 1 = 10	
	(i)	If a hydrocarbon mol (a) solid	lecule has 30 carbons, v (b) liquid	vhat form would it m (c) gas	ost likely be? (d) others.	
	(ii)	The maximum value WECS will be (a) 10	of the tip speed ratio f	or the lift force type (c) 5	arrangement of (d) None.	
	(iii)	What is the temperat (a) 6000K	ture in the outer layer o (b) 3000K	f outer core of the ea (c) 4000K	rth? (d) 5000K.	
	 (iv) Output of a wind turbine varies on air velocity (a) exponentially (b) logarithmically (c) linearly (d) cubically. 			lly		
	(v)	In case of OTEC, the g (a) (ΔT) ³	gross mechanical powe (b) (ΔT) ²	r is proportional to th (c) (ΔT)	ne (d) (ΔT)⁵	
	 (c) Thermal energy (d) Mechanical (vii) Tidal power is directly proportional to (a) square root of tidal range (b) square of tidal 			d as (b) Electrical en (d) Mechanical e		
					(b) square of tidal range (d) proportional to the tidal range.	
				2.		
	(ix)	A two-blade wind turbine produces maximum power when the tip-speed				
		ratio is equal to (a) π	(b) 2π	(c) 3π	(d) 0∙593.	
AE	IE 313	2	1			

B.TECH/AEIE/5TH SEM/AEIE 3132/2020

- (x) The maximum efficiency of a silicon solar cell is achieved when the cell is fabricated from
 (a) Mono-crystal Si
 (b) Polycrystal Si
 - (a) Mono-crystal Si
 - (c) Amorphous Si

(b) Polycrystal Si (d) any other Si.

Group – B

- (a) Comparison between conventional and non conventional sources. Draw the basic block diagram of a hybrid system consist of biomass and PV cell as a resource.
 - (b) Why energy audit is important? What are the different types of energy audit phase?

(3+4) + (2+3) = 12

- 3. (a) As per the temperature gradient of a distillation column, what are the components available from the crude oil?
 - (b) Draw the basic block diagram of a nuclear power plant.
 - (c) Discuss the environmental effects due to oil and natural gases.

5 + 4 + 3 = 12

Group – C

- 4. (a) Derive an expression of maximum efficiency of a solar cell. Define fill factor.
 - (b) What is a solar PV module? What are the different materials used for fabrication of solar cells.

(6+2) + (2+2) = 12

- 5. (a) Discuss solar spectrum and Air mass ratio. What are the advantages and disadvantages of pyranometer?
 - (b) Describe solar water distillation system with proper sketch.

(2+2+3)+5=12

Group – D

- 6. (a) Derive an expression of maximum output power from a wind turbine. Find its value at Betz condition?
 - (b) What factors are taken onto consideration in site selection for wind power generation?

(6+2)+4=12

7. (a) Discuss operating characteristics of the wind mill.
 A wind energy generator generates 2000 watts at a rated speed of 24 kph at the atmospheric pressure and temperature 20°C. Calculate the change in output if

B.TECH/AEIE/5TH SEM/AEIE 3132/2020

the wind generator is operated at a altitude of 2000m at temperature 10°C, wind speed 35kph and air pressure 0.88 atmosphere

(b) Explain updraft and downdraft gasifier with proper block diagram.

(3+4) + 5 = 12

Group – E

- 8. (a) What do you understand by spring and neap tides? Derive an expression of power generated by tidal current/stream power.
 - (b) What are the advantages and disadvantages of wave energy?

(4+5)+3=12

- 9. (a) What are the main types of ocean thermal energy conversion (OTEC) power plants? Explain any one.
 - (b) What are the environmental impacts due to construction of OTEC? Draw the basic block diagram of dry steam power plant based on geothermal as a resource.

(2+4) + (2+4) = 12

Department & Section	Submission link:	
AEIE	https://classroom.google.com/c/MjQxNjI0NDgxMjE3/a/MjcxMDQxNT cxOTYw/details	