B.TECH/AEIE/5TH SEM/AEIE 3103/2020

MICROPROCESSORS & MICROCONTROLLERS (AEIE3103)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

	(Multiple Choice Type Questions)						
1.	Choose the correct alternative for the following:				10 × 1 = 10		
	(i)	In 8085 μP number (a) 2	of register pair is (b) 3	(c) 6	(d) 8.		
	(ii)	AC flag is used in w (a) ADD C	hich following instruction (b) DAD D	ction? (c) DAA	(d) ADC C		
	(iii)	Which pin of 8085 (a) HLDA	$μ$ P is used to acknowle (b) IO/\overline{M}	edge INTR? (c) HOLD	(d) INTA		
	(iv)	Among the following (a) INTR	ngs which one is a vect (b) TRAP	tored interrupt-? (c) READY	(d) HOLD		
	(v)	If the operating free ANA M instruction (a) 3.5 µsec	-	MHz, then the time req (c) 10 μsec	uired to execute (d) 14 µsec		
	(vi)	In 8255 Mode 2 is called (a) Bit set reset mode (c) IO mode with handshake signal		(b) Simple data transfer mode(d) Bidirectional mode.			
	(vii)	In 8051 μC if RS ₁ =1 (a) Bank 0	and RS ₀ =0 then the so (b) Bank 1	elected register bank is (c) Bank 2	- (d) Bank 3.		
	(viii)	If the operating free an instruction of 10 (a) 3 µsec	2 2	MHz, then the time req (c) 10 μsec	uired to execute (d) 15 µsec		
	(ix)	In 8051 μC number (a) 2	of I/O port is (b) 3	(c) 4	(d) 5		
	(x)	After reset operation (a) 00H	on content of SP regist (b) 07H	er in 8051 μC is (c) 0000H	(d) FFH.		

AEIE 3103 1

Group - B

- 2. (a) Based on the size of the instruction classify the different instructions of 8085 μP with one suitable example.
 - (b) Write a program to store the last two digits of your autonomy roll number and registration number in memory location 8000H and 8001H respectively. Multiply the content of 8000_H with 8001_H . Store the result in memory location starting from 8002_H .
 - (c) With suitable example explain the process of data storage in a stack memory.

3 + 7 + 2 = 12

- 3. (a) Define opcode and operand with one suitable example.
 - (b) Store the last two digits of your registration number in memory location $8000_{\rm H}$. Write a program to count the number of 1's and 0's present in the content of memory location $8000_{\rm H}$. Store the result in memory location $9000_{\rm H}$.
 - (c) With one suitable example explain the process of subroutine call in $8085 \mu P$.

2 + 6 + 4 = 12

Group - C

- 4. (a) Draw the timing diagram of XRA M instruction. Assume that the opcode of the instruction is XX_H and it is stored in memory location 8000_H . Also calculate the time required to execute the instruction where the clock frequency is 3 MHz.
 - (b) What are the differences between memory mapped IO and IO mapped IO schemes?
 - (c) What is the advantage of partial address decoding over absolute address decoding?

(6+1)+3+2=12

- 5. (a) Design an interface between 8085 μP and one 8KB ROM memory chip using 3:8 decoder to generate the chip select signal. The first address in the ROM memory chip is 0000_{H} .
 - (b) Interface one 7 segment display and 8 DIP switches with 8085 μ P. Select suitable address.

6 + 6 = 12

Group - D

- 6. (a) Draw and discus the control word register (CWR) format of 8255 PPI in I/O mode.
 - (b) Draw the interfacing circuit to connect two LEDs to PC_0 and PC_7 line of 8255 PPI. Write an assembly language program for 8085 μP to periodically turn ON and OFF two LEDs by setting 8255 PPI in BSR mode.

AEIE 3103 2

B.TECH/AEIE/5TH SEM/AEIE 3103/2020

- (c) Write the control word value of 8255 PPI to set Port A as input in mode 1 and Port B as output in mode 1.
 - Write the 8085 μP instructions to load the above control word value in the CWR register. Assume Port A address is $F0_H$.

$$3 + (3 + 3) + (1 + 2) = 12$$

- 7. (a) Draw and discus the control word register (CWR) format of 8255 PPI in BSR mode.
 - (b) Explain Write a program to set PC₁ line and after some delay reset PC₃ line of 8255 PPI.
 - (c) Interface 8 LEDs to 8085 μP using 8255 PPI. Write a program blink the LEDs with delay continuously.

$$3 + 3 + (2 + 4) = 12$$

Group - E

- 8. (a) Write the main features of $8051 \mu C$.
 - (b) Write the name of different general purpose registers in $8051 \mu C$.
 - (c) What is the function of \overline{EA} signal in 8051 μ C?
 - (d) Draw and discuss the flag register of 8051 μ C.

$$4 + 2 + 2 + 4 = 12$$

- 9. (a) Write an assembly level program for $8051~\mu\text{C}$ to *cut paste* a block of 10 byte data from one memory to another memory location (internal RAM) in reverse order.
 - (b) What is the function of RS0 and RS1 bits in the PSW register of 8051 μ C?
 - (c) Write short notes on (any one)
 - (i) Internal RAM of 8051 μ C.
 - (ii) Serial data communication in $8051\,\mu\text{C}$.

$$5 + 2 + 5 = 12$$

Department & Section	Submission link:
AEIE	https://classroom.google.com/c/MTIxODk4ODA4NzU1/a/MjcxMDE4 NDk2NjQw/details