B.TECH/AEIE/ECE/ME/3RD SEM/MATH 2001 /2020 MATHEMATICAL METHODS (MATH 2001)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: **10** × **1** = **10**
 - The order and degree of the partial differential equation (i) $\frac{\partial^2 z}{\partial x \partial y} + \left(\frac{\partial z}{\partial x}\right)^2 = 0$ is (a) 1, 2 (b) 2, 1 (d) 2, 2. (c) 1, 1 The solution of zp = -x (where $p = \frac{\partial z}{\partial x}$) is (ii) (b) $\varphi\left(x, \frac{z}{v}\right) = 0$ (a) $\varphi(y, x^2 + z^2) = 0$ (c) $\varphi\left(z,\frac{x^3}{y}\right) = 0$ (d) $\varphi(yx + z, x^2 + z^2) = 0.$ For $f(z) = \frac{\sin z}{z}$, the point z = 0 is (iii) (a) an essential singularity (b) a non-isolated singularity (c) a removable singularity (d) a pole of order 2. The period of the function $f(x) = \cos x + \cos \sqrt{8} x$ is (iv) (a) $\pi + \frac{\pi}{2\sqrt{2}}$. (b) $2(1 + \sqrt{2})\pi$ (c) $2\sqrt{2}\pi$ (d) 2π .

B.TECH/AEIE/ECE/ME/3RD SEM/MATH 2001/2020

The function f(z) = u(x, y) + iv(x, y) is an analytic function of the (v) complex variable z = x + iy where $i = \sqrt{-1}$. If u(x, y) = 2xy, then v(x, y) may be expressed as (b) $x^2 - y^2 + constant$ (a) $-x^2 + y^2 + constant$ (c) $x^2 + y^2 + constant$ (d) – $(x^2 + y^2)$ + constant. For the differential equation $x^2(1-x)\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0$ (vi) (a) x = 1 is an ordinary point (b) x = 1 is a singular point (d) x = 0 is not a singular point. (c) x = 0 is an ordinary point If F[f(x)] = F(s), then $F[\cos ax f(x)] = \frac{1}{2}[F(s+a) + F(s-a)]$. This (vii) property of the Fourier transform is known as (a) linearity property (b) shifting property (d) scaling property. (c) modulation property The value of $\int_{-1}^{1} P_2(x) P_5(x) dx$ (where $P_2(x)$ and $P_5(x)$ are Legendre (viii) polynomials) is (a) 3 (b) 2(c) 1(d) 0. The complete integral of (p-q)(z-px-qy) = 1 (where $p = \frac{\partial z}{\partial x}$ (ix) and $q = \frac{\partial z}{\partial v}$ is (a) $z = ax^2 + by^2 + \frac{1}{a-b}$ (b) $z = ax + by + \frac{1}{a-b}$ (d) $z = (a - x) + (b - y) + \frac{1}{a - b}$. (c) $z = axy + \frac{1}{a-b}$ The function $f(z) = \overline{z}$ is (x) (a) continuous at z = 0(b) differentiable at z = 0(d) continuous, except at z = 0. (c) analytic

Group - B

- 2. (a) Show that the function $u(x, y) = x^3 3xy^2$ is harmonic. Construct the corresponding analytic function f(z) = u(x, y) i v(x, y).
 - (b) Find $\oint_c \frac{\tan \frac{2}{2}}{(z-a)^2} dz$ where *C* is the boundary of the square whose sides lie along $x = \pm 2$, $y = \pm 2$ described in the positive sense and -2 < a < 2.

$$6 + 6 = 12$$

MATH 2001

B.TECH/AEIE/ECE/ME/3RD SEM/MATH 2001/2020

3. (a) Find the Laurent's series expansion of $f(z) = \frac{z}{(z-1)(z-2)}$ about z = -2 in all possible regions.

(b) Evaluate
$$\oint_c \frac{e^{2z}}{(z-1)(z-2)} dz$$
 where *C* is the circular path $|z| = 3$.
7 + 5 = 12

Group – C

4. (a) Write the half range sine series of f(x) = 2 - x for $x \in [0, 2]$, and hence find the sum of the series $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$.

(b) Find f(x) if its Fourier cosine transform is $F_c(s) = \begin{cases} a - \frac{s}{2}, \text{ for } s < 2a \\ 0, \text{ for } s \ge 2a \end{cases}$ **6** + 6 = 12

- 5. (a) Using the cosine series expansion of the function f(x) = x in $(0, \pi)$, find the sum of the series $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \frac{1}{7^4}$
 - (b) Find the Fourier transform of $f(x) = \begin{cases} x, |x| \le 3\\ 0, |x| > 3 \end{cases}$. Also, find the Fourier transform of g(x) = 2f(3x).

6 + 6 = 12

Group - D

- 6. (a) Find the power series of $(1 + x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} y = 0$ about x = 0.
 - (b) Prove that $P_n(1) = 1$, where $P_n(x)$ is a Legendre polynomial.

8 + 4 = 12

- 7. (a) State the generating function of the Bessel's function $J_n(x)$. Use this to prove that $2J'_n(x) = J_{n-1}(x) J_{n+1}(x)$.
 - (b) Express $x^3 + x^2$ in terms of Legendre polynomials $P_0(x)$, $P_1(x)$, $P_2(x)$ and $P_3(x)$.

6 + 6 = 12

Group – E

8. (a) Eliminate the arbitrary function f from $z = f(x^2 - y^2)$ to obtain a partial differential equation.

(b) Find the complete integral of $q = (z + px)^2$ where $p = \frac{\partial z}{\partial x}$ and $q = \frac{\partial z}{\partial y}$. 5 + 7 = 12

- 9. (a) Find the general solution of the following partial differential equation: $(D^2 - 2DD' + D'^2)z = e^{x+2y} + x^3$, where $D \equiv \frac{\partial}{\partial x}$ and $D' = \frac{\partial}{\partial y}$.
 - (b) Solve $\frac{\partial u}{\partial x} = 8 \frac{\partial u}{\partial y}$ if $u(0, y) = 7e^{-4y}$ by the method of separation of variables.

6 + 6 = 12

Department & Section	Submission Link
AEIE	https://classroom.google.com/c/MTE4OTEzOTQyODI1/a/MjcxNDQ0MDA5Njk4/details
ECE A	https://classroom.google.com/c/MjMwNTc1NzQ1NjIz/a/Mjc0NTMyMDc3MDA1/details
ECE B	https://classroom.google.com/c/MTIyMDcyMjIzNDky/a/Mjc0MTIzNzg5OTg5/details
ECE C	https://classroom.google.com/c/MTIyMDcwODkwNzE4/a/Mjc0MTM2NDE5MDE3/details
ME A	https://classroom.google.com/c/NzA2MTgwNzcyNzFa/a/Mjc0NTMyMDc2ODk4/details
ME B	https://classroom.google.com/c/MTQxNzA2NDQ0Mjk0/a/Mjc0NTMyMDc2OTg4/details

Department & Section	Submission Link
AEIE/ECE/ME	https://classroom.google.com/c/MjE4MTgwOTgzNTY0/a/Mjc0NTMyMjc2OTk3/details