B.TECH/ME /7TH SEM/MECH 4144/2019 COMPUTATIONAL FLUID DYNAMICS

(MECH 4144)

Full Marks : 70

Figures out of the right margin indicate full marks. Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group. Candidates are required to give answer in their own words as far as practicable. **Group – A**

Time Allotted : 3 hrs

(Multiple Choice Type Questions)

1.	Cho	pose the correct alternative for the following			wing:	10 × 1 = 10		
	(i)	Substantial derivative is (a) partial derivative (c) temporal derivative			(b) total derivative (d) convective derivative			
	(ii)	Newton's second law is directly applicable to (a) control volume (c) both (a) and (b)			(b) fluid particle (d) surface of control volume			
	(iii)	Rate of linear elongating deformation component along y direction is (a) $\frac{\partial w}{\partial z}$ (b) $\frac{\partial w}{\partial y}$ (c) $\frac{\partial v}{\partial x}$ (d) $\frac{\partial v}{\partial y}$						
	(iv)	The turbulent intensity in laminar flow is (a) ∞ (b) 0 (c) 1 (d) 5.						
	(v)	Most of the kinetic energy of turbulence is contained(a) in smallest eddies(b) in large(c) both (a) and (b)(d) not wit			ntained (b) in largest (d) not withi	t eddies n eddies.		
	(vi)	 The time average magnitude of any fluctuating variables in a turbulent flo is by definition. (a) 0 (b) 1 (c) 2 (d) ∞. 						
	(vii)	The turbulent kinetic energy per unit mass i (a) $\frac{1}{2} \left(\overline{u^2} + \overline{v^2} + \overline{w^2} \right)$ (c) $\frac{1}{2} \left(\overline{u} + \overline{v} + \overline{w} \right)$			s expressed as (b) $\frac{1}{2} \left(\overline{u^{2}} + \overline{v^{2}} + \overline{w^{2}} \right)$ (d) $\frac{1}{2} \left(u^{2} + v^{2} + w^{2} \right)$.			
	(viii)	In one dimension (a) east cell boun (b) west cell boun (c) surrounding r (d) both (a) and (nal central differen Idary is considerec Indary is considere Inodal values are co (b).	cing schei d for inter d for inter onsidered	ing scheme for interpolation for interpolation hsidered for interpolation			
MECH 4144		44	1					

B.TECH/ME /7TH SEM/MECH 4144/2019

(ix)	Upwind differencing scheme is suitable for				
	(a) steady diffusion problem	(b) flow problem			
	(c) unsteady diffusion problem	(d) both (a) and (b).			

(x) 'QUAD' computational cells have
 (a) 5 boundaries
 (c) 3 boundaries

Group – B

- 2. (a) Briefly explain the significance of (i) control mass and (ii) control volume.
 - (b) How the control volume concept in the differential form is applied for mass conservation in fluid flow?

(3 + 3) + 6=12

(b) 2 boundaries

(d) 4 boundaries.

3. Describe the procedure to relate momentum and force for a differential control volume in three-dimensional general fluid flow problem.

12

Group – C

- 4. (a) Explain the central differencing scheme for one dimensional problem.
- (b) Write the general transport equation for a scalar variable Ø per unit mass and hence construct the continuity equation by substituting Ø with suitable variable.

5 + (3 + 4) = 12

5. Explain the procedure of solving a steady state one dimensional convectiondiffusion problem.

12

Group – D

6. How staggered-grid method is applied to connect pressure and velocity for steady flow condition?

12

7. Explain the guess-and-correct procedure for correcting and calculating pressure and velocity on a staggered grid arrangement with a flow chart diagram.

B.TECH/ME /7TH SEM/MECH 4144/2019

Group – E

8. Solve the matrix equation using Tri-Diagonal Matrix Algorithm (TDMA).

300	-100	0	0	0]	$\left[T_1\right]$		20000	
-100	200	-100	0	0	T_2		0	
0	-100	200	-100	0	T_3	=	0	
0	0	-100	200	-100	T_4		0	
0	0	0	-100	300	T_5		100000	

12

- 9. Write short notes on:
 - (i) Unstructured grid

(ii) Boundary condition

(iii) Post-processor of CFD software

4+4+4=12