Group - E

- 8. (a) Nickel (Ni) has FCC structure. Its lattice constant is 3.52 Å; atomic weight of Ni is 58.71. Calculate its radius, Atomic packing factor and density.
 - (b) Calculate the inter-planar spacing d of a plane (hkl) in a cubic lattice of side a = b = c.
 - (c) In a cubic crystal, a plane has intercepts at 2a, 3a, and 4a along three axes. Find the Miller indices.

$$(2+2+2)+3+3=12$$

- 9. (a) Sketch crystal planes (011) and (112) in a cubic crystal.
 - (b) Determine the expected Bragg angle for the first order reflection from the (113) set of planes for FCC platinum (at. Wt. = 195.08 gm/mol; density = 21.45 gm/cm³) when monochromatic radiation of wavelength 0.1542 nm is used.
 - (c) Calculate the packing faction of Body Centered Cubic unit cell.
 - (d) A cubic crystal has lattice constant 43Å and density 963 kg/m³. What type of cubic unit cell does it from if its atomic weight is 63.

$$(2+2)+3+2+3=12$$

B.TECH/BT/CE/CHE/EE/ME/1ST SEM/PHYS 1001(BACKLOG)/2019

PHYSICS - I (PHYS 1001)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

(Multiple Choice Type Questions)						
	Choos	se the correct alter	native for the follow	wing:	10 × 1 = 10	
	(i)			the ratio of 25:4 produ num intensity of interfer (c) 5:2		
	(ii)		g accelerated throu de Broglie wavelenç (b) 1.227Å	gh a potential differenc yth (c) 12.27Å	e 150.55 volt, is (d) 2Å.	
	(iii)	1 milligram of matter after getting completely converted to energy will yield (a) 90 Joule (b) 9×10^{10} Joules (c) 9 Joule (d) 900 Joules.				
	(iv)	The nearest neig (a) $\frac{a}{\sqrt{2}}$	hbour distance in case (b) $\frac{2a}{\sqrt{3}}$	ase of FCC structure (c) $\frac{2a}{\sqrt{2}}$	(d) a.	
	(vi) Two sources of intensities I and 4I are used in an interference exper Obtain intensity at points where the waves from two sources superii with a phase difference of π				olarization of light (d) 36.9°.	
	(vii)	Calculate the end (a) 12412.5 eV (c) 124.125 eV	ergy in electron volt	of a photon of wavelen (b) 12.4125 e ¹ (d) 1.24125 e ¹	V	

B.TECH/BT/CE/CHE/EE/ME/1ST SEM/PHYS 1001 (BACKLOG)/2019

- (viii) Find the de-Broglie wavelength of a proton whose kinetic energy is equal to the rest energy of an electron. Mass of proton is 1840 times that of an electron.
 - (a) 0.0004Å

(b) 0.004Å

(c) 0.4Å

- (d) 0.04Å.
- (ix) If λ_L and λ_K are the wavelength of L and K x-rays respectively, then
 - (a) $\lambda_L > \lambda_K$

(b) $\lambda_L < \lambda_K$

(c) $\lambda_L = \lambda_K$

- (d) $\lambda_L = 2 \lambda_K$.
- (x) In the process of Laser, Spontaneous emission rate depends on
 - (a) the number of atoms in excited state
 - (b) intensity of the exciting radiation
 - (c) both (a) and (b)
 - (d) the number of atom in the ground state.

Group - B

- 2. (a) What is polarization? State Brewster's law of polarization?
 - (b) What is the difference between the natures of ordinary and extraordinary rays of light when they pass through positive and negative crystals?
 - (c) Explain the difference between interference and diffraction of light.
 - (d) What is the condition for the missing order spectra for a diffraction grating? What particular order will be absent if width of the slit is equal to width of opaque space of grating?

$$(1+1)+2+3+(3+2)=12$$

- (a) State fundamental conditions for production of interference fringes.
 - (b) Newton's ring are observed in reflected light of $\lambda = 5.9 \times 10^{-7} m$. The diameter of the 10th dark ring is 0.005 m. Find the radius of curvature of the lens and the thickness of the air film.
 - (c) In a two slit interference pattern at a point, we observe 10th order maximum for wavelength of 7000Å. What order will be visible here if the source of light is replaced by light of wavelength 5000Å.
 - (d) What do you mean by laser? Why population inversion is an essential condition for stimulated emission in laser action?

$$2 + (2 + 2) + 3 + (1 + 2) = 12$$

Group - C

4. (a) A simple harmonic oscillator is characterized by $y = \cos wt$. Calculate the displacement at which kinetic energy is equal to its potential energy.

B.TECH/BT/CE/CHE/EE/ME/1ST SEM/PHYS 1001 (BACKLOG)/2019

- (b) Given that a mass of 5 kg is suspended from a spring of stiffness constant 5 Nm⁻¹. If the frequency of natural oscillations be $\frac{2}{\sqrt{3}}$ times the frequency of damped oscillations, find the damping constant.
- (c) What are the conditions for overdamped, critically damped and underdamped motions? Write the displacement-time relationship in underdamped case.
- (d) A simple pendulum has a period of 1 second and amplitude of 10 mm. After 10 complete oscillations, its amplitude is reduced to 5 mm. What is the relaxation time of the pendulum?

$$2 + 3 + (3 + 2) + 2 = 12$$

- 5. (a) Discuss the variation of velocity amplitude with driving force frequency in the steady state of a forced harmonic oscillator and show its behaviour graphically.
 - (b) Write down the differential equation of an LCR circuit. Make a comparison between mechanical parameters and electrical parameters in relation to vibration.
 - (c) Derive the classical wave equation. Verify $\varphi = ae^{(x-2t)}$ is the solution of classical wave equation or not?

$$(3+2)+3+(2+2)=12$$

Group - D

- 6. (a) Why Compton effect is not observed with visible light? An x-ray photon found to have its wavelength doubled on being scattered through 90°. Find the wavelength and energy of the incident photon.
 - (b) State the basic postulates of Planck's quantum theory. Show Wien's law can be derived from Planck's radiation law.
 - (c) An electron and photon both have momentum 10MeV/C. Find the total energy of each.

$$(2+3)+(2+2)+3=12$$

- 7. (a) What do you mean by matter wave? Write the difference between electromagnetic and matter wave.
 - (b) Show that the product of group velocity and phase velocity of the de Broglie wave are constant.
 - (c) State Heisenberg uncertainty principle. Give one application of this principle in real world.

$$(2+3)+3+(2+2)=12$$

PHYS 1001