M.TECH/VLSI/1st SEM/VLSI 5132/2019

VLSI IC FABRICATION (VLSI 5132)

Time Allotted : 3 hrs

Full Marks : 70

(b) oxidation

(d) cleaning.

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - (i) Class 1000 clean room means number of particle size up to $0.1 \,\mu\text{m}$ (a) 1 no (b) 1×10^3 nos (c) 1×10^2 nos (d) none of these.
 - (ii) Pure Silicon extraction process is

 (a) Bridgman technique
 (b) Czochralski technique
 (c) Float zone technique
 (d) none of these.
 - (iii) Optical masking is used for(a) pattern transfer(c) protection
 - (iv) Localized defects in an atomic dimension is called
 (a) point defect
 (b) lattice defect
 (c) atomic defect
 (d) none of these.
 - (v) In IC fabrication the photoresist layer is exposed to

 (a) ultraviolet light
 (b) infra red light
 (c) fluorescent light
 (d) visible light.
 - (vi) In nmos fabrication etching is done using

 (a) plasma
 (b) hydrochloric acid
 (d) oxalic acid.
 - (vii) Heavily doped polysilicon is deposited using
 - (a) chemical vapour decomposition
 - (b) chemical vapour deposition
 - (c) chemical decomposition
 - (d) dry deposition.

VLSI 5132

1

M.TECH/VLSI/1st SEM/VLSI 5132/2019

(c) mechanical

(viii) When the oxide growth time is large, the oxide rate curve is (a) parabolic (b) linear (c) hyperbolic (d) none of these. Plasma etching process is a (ix) (a) dry etching (b) wet etching (c) chemical etching (d) none of these. Sputtering is a (x) process. (a) physical (b) chemical

Group – B

(d) electrical

- 2. (a) Describe the process for growth of Silicon using Czochralski method.
 - (b) Prove that if a SiO₂ layer is grown by thermal oxidation, the thickness of Si consumed is 0.44 times the thickness of SiO₂. Given, the molecular weight of Si is 28.9 g/mol and the density of Si is 2.33 g/cm³. The corresponding values for SiO₂ are 60.08 g/mol and 2.21 g/cm³.

6 + 6 = 12

- 3. (a) What are the different types of charges that exist at or near the Si/SiO₂ interface of a MOSFET? How can these charges affect the performance of the transistor?
 - (b) Differentiate between LOCOS and STI techniques of oxidation.

(4+2)+6=12

Group – C

- 4. (a) What are Fick's 1st law and 2nd law of diffusion? What are the influential parameters to control the diffusion rate of impurities into semiconductor lattice?
 - (b) In thermal oxidation, mathematically find out the concentration of oxidizing species in inner surface and outer surface of oxide layer.
 (3 + 3) + 6 = 12
- 5. (a) Discuss the advantages of doping using ion implantation method over the diffusion method.
 - (b) Explain the basic principle of operation of an ion-implantation system with a suitable diagram.

4 + 8 = 12

M.TECH/VLSI/1st SEM/VLSI 5132/2019

Group – D

- 6. (a) What is wet chemical etching? What are the characteristics of an ideal etchant used for wet chemical etching?
 - (b) Describe about dry and plasma etching. What are the differences between diffusion and ion implantation? Describe the ion implantation system in IC fabrication technology.

(2+3) + (2+2+3) = 12

- 7. (a) What is a positive photoresist?
 - (b) Explain with suitable diagrams the steps of pattern transfer using a negative photoresist.

2 + 10 = 12

Group – E

- 8. (a) What do you mean by Thin Film? Give some application of Thin Film Technology. What do you mean by Ion Sputtering Technique?
 - (b) Describe the n-well fabrication process.

(1+2+3)+6=12

- 9. (a) Draw the cross-sectional structure of a CMOS inverter.
 - (b) Discuss the fabrication steps of GaAs MESFET. Mention some salient features of GaAs MESFET.

6 + 6 = 12

3