M.TECH/CSE/ECE/VLSI/3RDSEM/MATH 6121/2019

(b) For which value of λ , the game with the following pay-off matrix is strictly determinable?

	PLAYER B			
PLAYER A	λ	6	2	
	-1	λ	-7	
	-2	4	λ	

8 + 4 = 12

6 + 6 = 12

4 + 8 = 12

7. (a) Use dominance principle to reduce the following pay-off matrix to a 2×2 game and hence find the optimal strategies and the value of it:

	PLAYER B		
	1	7	2
PLAYER A	6	2	7
	5	1	6

(b) Use graphical method in solving the following game and find the value of the game.

- 8. (a) Find the extreme point(s) of the function $f(x_1, x_2, x_3) = -x_1^2 2x_2 x_3^2 2x_1x_2$ and determine their nature.
 - (b) Solve the following non-linear programming problem using Lagrange multiplier method:

Maximize $f(x_1, x_2) = 2x_1^2 - 3x_2^2 + 18x_2$ Subject to the constraints: $2x_1 + x_2 = 8$

$$x_1, x_2 \ge 0$$

9. Maximize
$$z = 12x_1 + 21x_2 + 2x_1x_2 - 2x_1^2 - 2x_2^2$$

Subject to the constraints
 $x_2 \le 8$
 $x_1 + x_2 \le 10$
 $x_1, x_2 \ge 0$
by applying Kuhn-Tucker conditions.

M.TECH/CSE/ECE/VLSI/3RDSEM/MATH 6121/2019

OPTIMIZATION TECHNIQUES (MATH 6121)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - (i) The basic feasible solutions of the system of equations $x_1 + x_2 + x_3 = 8$ and $3x_1 + 2x_2 = 18$ are (a) (2,6,0) and (6,0,2) (b) (1,7,0) and (7,1,0) (c) no basic solution (d) (9,2,0) and (2,9,0).
 - (ii) To standardize an L. P. P. with " \leq " type constraints, which variables are introduced (a) slack (b) surplus (c) artificial (d) unrestricted.
 - (iii) In a transportation problem of size $m \times n$, a feasible solution is called a basic feasible solution if the number of non-negative allocation is equal to (a) m - n + 1 (b) m - n - 1 (c) m + n - 1 (d) m + n.
 - (iv) The solution of a transportation problem is never(a) unbounded (b) feasible (c) optimal (d) basic feasible.
 - (v) An assignment problem can be solved by

 (a) VAM
 (b) matrix minima method
 (c) Dominance principle
 (d) Hungarian method.
 - (vi) In a fair game the value of the game is (a) 1 (b) 0 (c) 2 (d) unbounded.
 - (vii) The value of the game having the following pay-off matrix is

(viii) In an assignment problem, the least possible number of lines required to cover all the zeroes of the reduced cost matrix of order *n*, for an optimal solution is

(a)
$$n$$
 (b) $n-1$ (c) $n+1$ (d) n^2 .
1 1

MATH 6121

4

12

MATH 6121

M.TECH/CSE/ECE/VLSI/3RDSEM/MATH 6121/2019

(ix) If (1,1) is a stationary point of the function f(x, y), which of the following condition assures that (1,1) is a global minimum of it?

(a) Hf(1,1) is negative definite

- (b) Hf(x, y) is negative definite for all (x, y)
- (c) Hf(x, y) is positive definite for all (x, y)
- (d) Hf(1,1) is positive definite.
- (x) The quadratic form $Q(x, y) = -x_1^2 2x_2^2$ is (a) positive definite (b) po (c) negative definite (d) ne

(b) positive semi-definite(d) negative semi-definite.

Group – B

2. (a) Solve the following L.P.P. by graphical method: Minimize $z = 20x_1 + 10x_2$

Subject to the constraints

- $x_1 + x_2 \le 40$ $3x_1 + x_2 \ge 30$ $4x_1 + 3x_2 \ge 60$ $x_1, x_2 \ge 0.$
- (b) Use Simplex method to solve the following linear programming problem: Maximize z= x₁+ x₂+ 3x₃ Subject to 3x₁+2x₂+ x₃ ≤ 3 2x₁+ x₂+2x₃ ≤ 2 x₁, x₂, x₃ ≥ 0.
 5+7 = 12
- 3. (a) Use 'Big-M' method to solve the following L.P.P.: Maximize $z = 3x_1 - x_2$ Subject to the constraints $-x_1 + 3x_2 > 2$

$$-x_1 + 3x_2 \ge 2$$

$$5x_1 - 2x_2 \ge 2$$

$$x_1, x_2 \ge 0.$$

(b) Write the dual of the following L.P.P.: Minimize $z = 3x_1-2x_2$ Subject to $2x_1+x_2 \le 1$ $-x_1+3x_2 \ge 4$ $x_1, x_2 \ge 0$

M.TECH/CSE/ECE/VLSI/3RDSEM/MATH 6121/2019

Group – C

4. (a) Find out the minimum cost for the assignment problem whose cost coefficients are follows:

	Α	B	С	D	Е
Ι	-2	-4	0	-6	-1
II	0	-9	-5	-5	-4
III	-3	-8	-9	-2	-6
IV	-4	-3	-1	0	-3
V	-9	-5	-8	-9	-5

(b) Solve the following transportation problem by matrix minima method:

	D ₁	D ₂	D ₃	D ₄	Availability
<i>S</i> ₁	3	5	7	6	50
<i>S</i> ₂	2	5	8	2	75
<i>S</i> ₃	3	6	9	2	25
Demand	20	20	50	60	

5. (a) Find the optimum transportation schedule and minimum total cost of the following transportation problem:

	D ₁	D ₂	D_3	a _i
O_1	10	7	8	45
02	15	12	9	15
03	7	8	12	40
b _j	25	55	20	

(b) Formulate the following transportation problem as an LP model to minimize the total transportation cost.

	D1	D ₂	Availability (a_i)
S ₁	19	30	7
<i>S</i> ₂	70	30	9
Demand (b_j)	6	10	

8 + 4 = 12

6. (a) Use algebraic method to solve the following game:

	PLAYER B			
	-1	2	1	
PLAYER A	1	-2	2	
	3	4	-3	
3				

8 + 4 = 12

MATH 6121

MATH 6121

2