B.TECH/IT/5TH SEM/INFO 3133/2019

9. (a) State Kuratowski's theorem.

(b) Obtain the dual of k_4 when embedded on the plane.

(c) Prove that the graph $k_{m,n}$ has a perfect matching if and only if m = n.

2 + 4 + 6 = 12

B.TECH/IT/5TH SEM/INFO 3133/2019

DISCRETE MATHEMATICS (INFO 3133)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choose the correct alternative for the following:	$10 \times 1 = 10$
----	---	--------------------

(i)	If $p \leftrightarrow q \equiv (p \rightarrow q) \wedge r$ then r is				
	(a) $p \rightarrow q$	(b) ~ <i>p</i>	(c) $q \rightarrow p$	(d) ~ q .	

- (ii) The contrapositive of $\sim p \rightarrow q$ is (a) $p \rightarrow q$ (b) $\sim q \rightarrow \sim p$ (c) $\sim q \rightarrow p$ (d) $q \rightarrow \sim p$.
- (iii) Everybody in a room shakes hands with everybody else. The total number of handshakes is 66. The total number of persons in the room is
 (a) 11 (b) 12 (c) 13 (d) 14.
- (iv) Determine which of the following statements is *not* true.
 (a) The Petersen graph is non-planar
 (b) K₅ is non-planar
 - (c) $K_{3,3}$ is non-planar
 - (d) The dual graph of a planar graph is non-planar.
- (v) For any graph *G*, if $\omega(G)$ is the clique number of *G* and if $\chi(G)$ is the chromatic number of *G*, then

(a) $\omega(G) = \chi(G)$	(b) $\omega(G) = \chi(G) + 3$
(c) $\omega(G) \leq \chi(G)$	(d) $\omega(G) \ge \chi(G)$.

(vi) The sum of the co-efficient in the expansion $(x + Y + z)^{10}$ is (a) 2^{10} (b) 2^{9} (c) 3^{10} (d) 3^{9} .

1

B.TECH/IT/5TH SEM/INFO 3133/2019

- (vii) The chromatic polynomial of a tree with *n* vertices is (a) $\lambda^{n-1}(\lambda-1)$ (b) $\lambda^n(\lambda-1)^n$ (c) $\lambda(\lambda-1)^{n-1}$ (d) $\lambda(\lambda-1)^n$.
- (viii) The matching number for the graph $K_{n,n}$ is (a)2 (b) n (c) n^2 (d) n - 1.
- (ix) Negation of $\exists x \forall y, P(x, y)$ is (a) $\forall x \forall y, \sim P(x, y)$ (b) $\forall x \exists y, \sim P(x, y)$ (c) $\exists x \exists y, \sim P(x, y)$ (d) $\forall x \forall y, P(x, y)$.
- (x) A solution of $3x \equiv 1 \pmod{7}$ is $x \equiv$ (a) 2 (mod 7) (b) 5 (mod 7) (c) 4 (mod 7) (d) 6 (mod 7).

Group – B

- 2.(a) Prove the following without constructing the truth table. $(q \to (p \land \sim p)) \to (r \to (p \land \sim p)) \equiv r \to q$
- (b) Determine which of the following compound proposition tautology is and which one is contingency.
 i) (~ p ↔ ~ q) ↔ (q ↔ r).
 ii) (p → (q → r)) → ((p → q) → (p → r)).
 4 + (4 + 4) =12
- 3.(a) Obtain the principal disjunctive normal form and the principal conjunctive normal form of the following statement: $p \lor (\sim p \rightarrow (q \lor (\sim q \rightarrow r)))$
- (b) Check the validity of the following argument."If a number is divisible by 6, then it is divisible by 3. The number is not divisible by 3. Therefore, the number is not divisible by 6."

- 4.(a) Show that 7^{402} +16!=14(mod17). Show your calculations in detail, and state every theorem that you use.
- (b) Let *p* be a prime number.

If $a \equiv b \pmod{p}$, then prove that $a^k \equiv b^k \pmod{p}$ for every positive integer k. Is it true that if $a^k \equiv b^k \pmod{p}$, then $a \equiv b \pmod{p}$? Justify your answer.

B.TECH/IT/5TH SEM/INFO 3133/2019

- 5.(a) Find the general solution of the equation 5x + 32y = 28 in integers. (Express your solution in terms of a parameter *t*.)
 - (b) Prove that there is an infinite number of prime numbers.

6 + 6 = 12

Group – D

- 6.(a) Assuming that repetitions are not permitted, how many four-digit numbers can be formed from the six digits 1, 2, 3, 5, 7, 8?
 - i. How many of the numbers in part (i) are less than 4000?
 - ii. How many of the numbers in part (i) are even?
 - iii. How many of the numbers in part (i) are odd?
 - iv. How many of the numbers in part (i) are multiples of 5?
 - v. How many of the numbers in part (i) contain both the digits 3 and 5?
- (b) How many positive integers less than 10, 00,000 have the sum of their digits equal to 19?

(6 ×1)+ 6= 12

- 7. (a) Five gentlemen *A*, *B*, *C*, *D* and *E* attend a party, where before joining the party, they leave their overcoats in a cloak room. After the party, the overcoats get mixed up and are returned to the gentlemen in a random manner. Using the principle of inclusion-exclusion, find the probability that none receives his own overcoat.
 - (b) Solve the recurrence relation $a_n - 6a_{n-1} + 8a_{n-2} = 9$ for $n \ge 2$ where $a_0 = 10$ and $a_1 = 25$.

6 + 6 = 12

Group – E

- 8. (a) In an examination seven subjects are to be scheduled; $S_1, S_2, S_3, S_4, S_5, S_6, S_7$. Following pairs of subjects have common students: (S_1, S_2) , (S_1, S_3) , (S_1, S_4) , (S_1, S_7) , (S_2, S_3) , (S_2, S_4) , (S_2, S_5) , (S_2, S_7) , (S_3, S_4) , (S_3, S_6) , (S_3, S_7) , (S_4, S_5) , (S_4, S_6) , (S_5, S_6) , (S_5, S_7) and (S_6, S_7) . How can the examination be scheduled so that no student has two examination at the same day?
 - (b) Prove that $K_{3,3}$ is non-planar.

6 + 6 = 12

6 + 6 = 12

7 + 5 = 12

INFO 3133

3