B.TECH/ECE/7TH SEM/ECEN 4102/2019

Group – E

- 8. (a) Determine the Galois field elements of GF (2³) for the corresponding polynomial $p(x) = x^3+x+1$.
 - (b) What do you mean by primitive element? α^3 , α^5 are field elements of GF (2³), determine their order and check whether or not they are primitive elements.
 - (c) What are the advantages of Turbo code? Discuss how it is implemented?

3 + (1 + 2 + 2) + 4 = 12

 $(3 \times 4) = 12$

- 9. Write short notes on (*Any Three*).
 - (i) Hamming Code
 - (ii) Trellis diagram
 - (iii) Shannon-Fano code
 - (iv) BCH Code
 - (v) Source coding.

B.TECH/ECE/7TH SEM/ECEN 4102/2019

CODING & INFORMATION THEORY (ECEN 4102)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

 $10 \times 1 = 10$

- (i) Purpose of the source coding is to
 - (a) Increase the information transmission rate
 - (b) Decrease the information transmission rate
 - (c) Decrease the S/N ratio
 - (d) Decrease the probability of error.
- (ii) Code rate r, k information bits and n as total bits, is defined as (a) r = k/n (b) k = n/r (c) r = k * n (d) n = r * k.
- (iii) For a (7,4) cyclic code generated by $g(x)=x^3+x+1$. The syndrome for the error pattern $e(x)=x^5$ is (a) 101 (b) 111 (c) 110 (d) 011.
- (iv) In discrete memoryless source, the current letter produced by a source is statistically independent of _____.
 (a) past output (b) future output
 - (c) both a and b (d) none of the above
- (v) If m = 3, then length (n) of the BCH code (a) 6 (b) 5 (c) 7 (d) none of these.
- (vi) An encoder for a (4,3,5) convolution code has input order of (a) 4 (b) 2 (c) 3 (d) 5.
- (vii) Which among the following represents the code in which codeword consists of message bits and parity bits separately?
 (a) Block Codes
 (b) Systematic Codes
 - (c) Code Rate (d) Hamming Distance.

ECEN 4102

1

B.TECH/ECE/7TH SEM/ECEN 4102/2019

(viii) The generator	polynomial	of a (7,3) cyclic	code has a degree o	f
(a) 2	(b) 3	(c) 4	(d) 5.	

- (ix) Basically, Galois field consists of _____ number of elements.
 (a) finite
 (b) infinite
 (c) both a and b
 (d) none of the above.
- (x) What is the Hamming distance between 11011 & 11001? (a) 2 (b) 3 (c) 1 (d) 5?

Group – B

- 2. (a) Define mutual information, channel capacity.
 - (b) Show that H(X, Y) = H(X/Y) + H(Y). where symbols have their usual meanings.
 - (c) An analog signal band limited to 5 kHz is quantized in 8 levels of a PCM system with probabilities 1/4, 1/5, 1/5, 1/10, 1/10, 1/20, 1/20, 1/20 respectively. Calculate entropy and the rate of information.
 (2 + 2) + 3 + (3 + 2) = 12
- 3. (a) A discrete memoryless source has seven symbols x_1 , x_2 , x_3 , x_4 , x_5 , x_6 and x_7 with probabilities of occurrence $P(x_1)=0.05$, $P(x_2)=0.15$, $P(x_3)=0.2$, $P(x_4)=0.05$, $P(x_5)=0.15$, $P(x_6)=0.3$ and $P(x_7)=0.1$. Construct the Huffman code and determine
 - (i) Entropy
 - (ii) Average code length
 - (iii) Code efficiency.
 - (b) Define uniquely decodable codes.

(5+2+2+2)+1=12

Group – C

- 4. (a) An error control has the following parity check matrix.
 - [101100]
 - $H = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$
 - (i) Determine the generator matrix G
 - (ii) Decode the received code word 110110.

B.TECH/ECE/7TH SEM/ECEN 4102/2019

- (b) For a symmetric linear block code, the three parity check digits, c₄, c₅ and C₆ are given by
 C₄ = m₁⊕ m₂⊕ m₃
 C₅ = m₁⊕ m₂
 C₆ = m₁ ⊕ m₃
 (i) Construct generator matrix.
 - (ii) Construct code that begins with 001, generated by this matrix.

(3+3) + (4+2) = 12

- 5. (a) For a linear block code derive that $C.H^{T} = 0$, where, symbols have their usual meaning.
 - (b) What is an equivalent code?
 - (c) Define minimum distance of a code-set. Minimum distance of a code is 5, determine the error-detection and error- correction capability of the code.
 - (d) Parity check matrix of a linear block code is

- (i) Determine the generator matrix.
- (ii) Assuming that a vector [101111] is received, find the correct data. 3 + 2 + (1 + 1 + 1) + (2 + 2) = 12

Group – D

- 6. (a) For a systematic (7, 3) cyclic code determine the generator matrix and parity check matrix if $g(x) = x^4 + x^3 + x^2 + 1$.
 - (b) Determine systematic and nonsystematic code words for i = (1101) for the (7,4) code with $g(x) = x^3+x+1$.

6 + 6 = 12

- 7. (a) For a (2, 1, 2) convolution code, $g^0 = (101)$ and $g^1 = (110)$. Draw the encoder. Find the state diagram, for this convolution code.
 - (b) What is constraint length in convolution code? Compute the same for the above mentioned code.

3 + 7 + 2 = 12

2

3