B.TECH/ECE/5TH SEM/ECEN 3103/2019

Group – E

- 8. (a) Draw and explain the small signal model of the push pull amplifier and calculate its small signal voltage gain.
 - (b) Evaluate the differential voltage gain of a resistive load differential amplifier circuit.
 - (c) In the circuit of Fig. 2, M2 is twice as wide as M1. Calculate the small signal gain if the bias values of Vin_1 and Vin_2 are equal.

- 9. (a) Draw the circuit of common source MOSFET amplifier.
 - (b) Draw the circuit of differential amplifier with active load.
 - (c) Draw the circuit of switched capacitor integrator.

4 + 4 + 4 = 12

B.TECH/ECE/5TH SEM/ECEN 3103/2019

MICROELECTRONICS & ANALOG VLSI DESIGN (ECEN 3103)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

 $10 \times 1 = 10$

- (i) At the threshold inversion point, space charge width reaches its (a) Minimum (b) Maximum (c) $x_{dT} = N_a/\varphi_{fp}$ (d) $x_{dT} = 2N_a/\varphi_{fp}$
- (ii) Ideal MOSFET can be considered as a constant current source when operated in

(a) triode region	(b) deep triode region
(c) saturation region	(d) none of the above.

- (iii) For low frequency operation, MOS capacitance in the strong inversion region is equivalent to the
 - (a) insulator capacitance
 - (b) depletion layer capacitance added in series with insulator capacitance
 - (c) depletion layer capacitance
 - (d) depletion layer capacitance added in parallel with insulator capacitance.
- (iv) The channel resistance (r_0) of the MOSFET is related with the channel length modulation parameter (λ)

a) <i>r</i> ₀	α λ ⁻¹	(b)	$r_0 \alpha \lambda^{-1/2}$
c) r_0	αλ	(d)	$r_0 \alpha \lambda^{1/2}$

- (v) The gate-to-channel capacitance of the MOSFET is given as (a) $C_{GC}=W_{eff}(L+L_D)C_{OX}$ (b) $C_{GC}=W_{eff}LC_{OX}$
 - (c) $C_{GC}=W_{eff}(L-L_D)C_{OX}$ (d) $C_{GC}=W_{eff}(L-2L_D)C_{OX}$.
- (vi) Most popular scaling technique in today's nanotechnology is
 - (a) Constant Voltage Scaling (b) Constant Field Scaling
 - (c) Constant Energy Scaling (d) Constant Charge Scaling.

1

B.TECH/ECE/5TH SEM/ECEN 3103/2019

- (vii) The performance of a current sink / source circuit can be improved by
 - (a) reducing *V_{MIN}* and output resistance
 - (b) increasing V_{MIN} and output resistance
 - (c) reducing V_{MIN} and increasing output resistance
 - (d) increasing V_{MIN} and reducing output resistance.
- (viii) DIBL can be mitigated by
 - (a) increasing the doping concentration
 - (b) making the junction depth shallow
 - (c) none of the above
 - (d) both (a) & (b).
- Switched capacitor circuit realizes (ix)
 - (a) Capacitance (b) Resistance (d) Current Source. (c) Inductance
- 0.7 technology scaling enables layout area scaling of (x) (a) 0.7 (b) 0.5 (c) 0.45 (d) 0.65.

Group - B

- 2. Derive the expression for metal-semiconductor work function (a) difference of the MOS structure with the help of energy band diagram.
 - Consider an *n*⁺ Poly Silicon gate and *p*-type silicon substrate doped to (b) $N_a=3 \times 10^{16} \text{ cm}^{-3}$. Assume, $Q_{ss}'=10^{11} \text{ cm}^{-2}$, $\varepsilon_{r(semiconductor)}=11.7$, $\varepsilon_{r(oxide)}=3.9$, $n_i=1.5\times 10^{10}$ cm⁻³, $V_t=0.026$ V and $\varphi_{ms}=-1.13V$. Determine the oxide thickness such that V_{TN} = +0.65V. All the symbols have their usual significance.

6 + 6 = 12

- What are Constant Voltage Scaling and Constant Field Scaling? 3. (a)
 - Which scaling is more popular and why? (b)
 - Explain the several Short Channel Effects observed in a scaled MOSFETs. (c) 4 + 3 + 5 = 12

Group - C

Explain photo lithography. 4. (a)

Briefly describe the diffusion process. (b) **ECEN 3103**

2

B.TECH/ECE/5TH SEM/ECEN 3103/2019

Distinguish between dry etching and wet etching. Briefly explain (c)electromigration.

4 + 4 + 4 = 12

- Briefly describe the n-well fabrication process. 5. (a)
 - A proximity printer operates with a 20 µm mask to wafer gap and a (b) wavelength of 250 nm. Find the minimum linewidth that can be obtained. 10 + 2 = 12

Group - D

- (a) What are the design steps for analog VLSI flow? 6.
 - Draw large signal models for NMOS. (b)
 - What is transconductance and on what parameters it depends? (c)

3 + 4 + 5 = 12

7. (a) Explain the principle of operation of cascode current sink circuit. Explain quantitatively the principle used in biasing MOS devices for reduction of V_{MIN} in the current sink circuit. Also, show how V_{MIN} is reduced in high - swing cascode circuit.

Fig. 1

Consider the common–source amplifier (Fig. 1) for the case $V_{DD} = 3 V_{c}$ $V_{tn} = |V_{tp}| = 0.6 V$, $\mu_n C_{OX} = 200 \mu A/V^2$, and $\mu_p C_{OX} = 65 \mu A/V^2$. For all transistors, $L = 0.4 \mu m$, and $W = 4 \mu m$. Also, $V_{An} = 20 V$, $|V_{An}| = 10 V$, and $I_{REF} = 100 \ \mu A$. Find the small signal voltage gain.

(3+3+3)+3 = 12

ECEN 3103

(b)

3