Group – E

8. (a) Using Taylor's series method solve the differential equation:

 $\frac{dy}{dx} = -2xy^2$ where, y(0) = 1. Calculate, y(0.2) and y(0.4) with step length 0.2.

(b) Fit a second degree polynomial from the following data from Table 5:

x	1	2	3	4	5
у	3	7	13	21	31

Table 5

6 + 6 = 12

- 9. (a) Given, $\frac{dy}{dx} = y x$, y(0) = 2. Applying fourth order Runge-Kutta method Find y(0.1) and y(0.2) correct to four decimal places.
 - (b) Fit a second degree parabola $y = ax^2 + bx + c$ with the following Table 6.

x	2	3	5	6	8
у	11.7	25.7	72.5	105.5	190.7

Table 6

6 + 6 = 12

MCA/1ST SEM/ MCAP 1103/2019

NUMERICAL ANALYSIS (MCAP 1103)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - (i) In trapezoidal rule the error is zero if f(x) is of degree
 (a) 1
 (b) 2
 (c) 3
 (d) any of (a), (b) and (c).
 - (ii) Euler's method is a _____ order Runge-Kutta method.
 (a) first (b) second
 (c) fourth (d) third
 - (iii) The convergency criterion of direct iterative method $x=\emptyset(x)$ is (a) $|\emptyset'(x)| < 1$ (b) $|\emptyset(x)| > 1$ (c) $|\emptyset(x)|=1$ (d) none of (a), (b) and (c).
 - (iv) The number of significant digits in 1.00234 is
 (a) 4
 (b) 6
 (c) 3
 (d) 5.
 - (v) The values of λ for which the equation Ax = λx has a non-trivial solutions are called
 (a) Eigen values
 (b) Eigen vectors

(a) Eigen values	(b) Eigen vectors
(c) Trivial values	(d) Inverse of A.

(vi) If a be the actual value and e be it's estimated value, then the relative error is

|a-e|

a)	$\frac{a}{e}$	(b)
	$\frac{a-e}{e}$	(d)

(vii) Newton-Raphson method is used to find the root of the equation $x^2 - 2 = 0$. If iterations are started from - 1, then iterations will be (a) converge to -1
(b) converge to $\sqrt{2}$ (c) converge to $-\sqrt{2}$ (d) No converge.

MCAP 1103

1

MCA/1st SEM/ MCAP 1103/2019

(viii) The number of different polynomials that can go through two fixed data points (x1,y1) and (x2,y2) is
(a) 0
(b) 1

(a) 0	(b) I
(c) 2	(d) infinite.

- (ix) The convergence of which of the following methods is sensitive to starting value?
 (a) False position
 (b) Gauss-Seidal method
 (c) Newton-Raphson method
 (d) All of (a), (b) and (c).
- (x) When $\Delta f(x) = f(x + h) f(x)$, then constant k=? (a) f(x+k)-f(x) (b) f(k)-f(0)(c) 0 (d) 1.

Group – B

- 2. (a) Find a positive root of $xe^x = 2$ by the method of false position.
 - (b) Find a real root of $x^3 x = 1$ between 1 and 2 by bisection method. Compute ten iterations.

6 + 6 = 12

- 3. (a) Find a real root of the equation $\cos x = 3x 1$ correct to 3 decimal places using iteration method.
 - (b) A real root of the equation $f(x) = x^3 5x + 1 = 0$ lies in the interval (0, 1). Perform four iterations of the secant method.

6 + 6 = 12

Group – C

4. (a) Construct a backward difference table for $y = \log x$ given in Table 1 and find values of $\nabla^3 \log 40$ and $\nabla^4 \log 50$.

х	10	20	30	40	50
у	1	1.3010	1.4771	1.6021	1.6990

Table 1

(b) The population of a town in the decimal census was as given Table 2. Estimate the population for the year 1895.

Year x 1	1891	1901	1911	1921	1931
Population y (in thousands)	46	66	81	93	101

Table 2

6 + 6 = 12

MCA/1st SEM/ MCAP 1103/2019

5. (a) Using Lagrange interpolation method compute the value of f(x) for x = 2.5 from the following Table 3

Х	1	2	3	4	
Y	1	28	27	34	
Table 3					

(b) Using Newton's divided difference formula, find a polynomial function satisfying the following data from table 4. Hence find f(1).

Х	-4	-1	0	2	5
f(x)	1245	33	5	9	1335

table 4

6 + 6 = 12

Group – D

6. (a) The following relation gives the velocity v of a body during the time t specified. Find it's acceleration at t= 1.15.

(b) Evaluate, $\int_0^5 \frac{dx}{4x+5}$ dividing the range into 10 equal parts with the help of Simpson's 1/3 rule. Then find an approximate value of $\log_e 5$ by calculating to 4 decimal places.

6 + 6 = 12

7. (a) What is Pivot element in a system of linear equation? What do you mean by partial pivoting? Solve the following system of linear equations using Gauss elimination method.

$$2x + 3y - z = 45x - 3y + 9z = 112x + y + 4z = 7$$

(b) Solve the following system of linear equations by Gauss-Seidel method. x + 2y + z = 8

$$2x + 3y + 4z = 20 4x + 3y + 2z = 16$$

6 + 6 = 12