MCA/1st SEM/MCAP 1104 (BACKLOG)/2019

DISCRETE MATHEMATICS (MCAP 1104)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - If the general term of the sequence $\{a_k\} = a^k$, then the corresponding (i) generating function is (a) $\frac{1}{(1-ax)}$ (b) $\frac{1}{(1-x)}$ (c) $\frac{k}{(1-ax)}$ (d) $\frac{a}{(1-ax)}$
 - If n be the number of vertices, e be the number of edges and k be the (ii) number of components then

(a) e > n - k(d) $e \ge n - k$ (c) $e \leq n - k$ (d) none of these.

- If the function f : R \rightarrow R is defined by f(x) = $\begin{cases} 3x 4, & \text{when } x > 0 \\ -3x + 2 & \text{when } x \ge 0 \end{cases}$ (iii) then, $f^{-1}(-2) =$ (a) {2} (b) $\{-2,2\}$ (d) none of these. (c) {0,2}
- Find the rank of the word LETTER, when the letters are arranged as in (iv) dictionary. (d) 16.

(a) 13 (b) 14 (c) 15

- A Spanning-Tree of a connected graph G is a (v)
 - (a) graph containing all the vertices
 - (b) graph containing all the edges
 - (c) sub graph containing all the vertices and acyclic
 - (d) none of the above.
- Shortest path of a connected graph is obtained by applying (vi) (a) prim's algorithm (b) kruskal's algorithm. (c) dijkstra's algorithm (d) all the above.

1

MCAP 1104

MCA/1st SEM/MCAP 1104 (BACKLOG)/2019

(vii) The power set of an empty set has exactly _____ subset. (c) zero (d) three (a) one (b) two (viii) If a set has 3 elements then A×A×A has (a) 9 elements (b) 27 elements (c) 6 elements (d) 19 elements. If cardinality (A+B) = cardinality (A) + cardinality (B), then (ix) (a) A is a subset of B (b) B is a subset of A (c) A and B are disjoint sets (d) none of these. Language of finite automata is (x) (a) type-0 (c) type-2 (d) type-3. (b) type-1

Group – B

- Prove that $(P \land (P \leftrightarrow Q)) \rightarrow Q$ is a tautology. 2 (a)
 - A relation ρ is defined on the set N of natural numbers such that "m ρ n *if f* (b) m is a divisor of n" for all m, n \in N. Examine if ρ is (i) Reflexive (ii) Symmetric (iii) Transitive. 3 + (3 + 3 + 3) = 12
- 3. (a) Prove that for n variables the sum of all minterms = 1.
 - (b) Let A = {a, b} and P(A) be it's power set. Let \subseteq be the inclusion relation on the elements of $(P(A), \subseteq)$. Draw the hasse diagram for $(P(A), \subseteq)$. 6 + 6 = 12

Group – C

- 4. (a) Find the coefficient of x^9 in $(1+x+x^2+\dots+x^5)^4$.
 - Solve the recurrence relation by generating function, (b) $a_n - 7a_{n-1} + 10a_{n-2} = 0$ for $n \ge 2$, where $a_0 = 10$, $a_1 = 41$.

6 + 6 = 12

- 5. (a) What is the number of permutations in the letters of the word MISSISSIPPI where, 4S's don't come together?
 - Consider a set of integers from 1 to 250. Find how many of these numbers (b) are divisible by 3 or 7 or 5. Also indicate how many are divisible by 3 or 7 but not by 5 and divisible by 3 or 5.
 - Find the integer solution for the Diophantine equation 195x + 42y = 12. (c) 3 + 4 + 5 = 12

Group – D

- 6. (a) Prove that a tree with n vertices always has (n-1) edges.
 - (b) Prove that the maximum number of edges in a graph G with n vertices and k components is (n k)(n k + 1)/2.

6 + 6 = 12

7. (a) Apply Prim's algorithm to draw the minimum spanning tree for the above connected weighted graph shown in Fig.1.

(b) Define the following terms:
(i) Walk (ii) Path (iii) Bipartite graph (iv) Isomorphism of a graph.
6 + (1.5 × 4) = 12

Group – E

- 8. (a) What is regular expression and regular language? Show that the language $\{0n10n : n \ge 1\}$ is not a regular language. Define context sensitive language with example.
 - (b) Consider the grammar G with V = {S, A,B}, Σ = {a, b} and P= { S-> aAS, S->a, A->SbA, A->ba } Construct the derivation tree of the word aabbaa.

$$(2+4) + (2+4) = 12$$

- 9. (a) Construct a regular grammar for the language L={ $0^{n} 11 | n \ge 1$ }.
 - (b) Design a DFA that accepts even number of a's and b's.
 - (c) What is the Mealy machine?

4 + 6 + 2 = 12