MCA/1ST SEM/MCAP 1103 (BACKLOG)/2019

- (b) Find the real root of $x^3 x 11 = 0$ using bisection method.
- (c) Evaluate y(0.2) using Runge-Kutta method of fourth order to calculate $\frac{dy}{dx} = y + x$, y(0) = 1 taking h = 0.1.
 - 5 + 3 + 4 = 12
- 9. (a) Evaluate y(0.02) using Euler's modified method to calculate $\frac{dy}{dx} = x^2 + y$, y(0) = 1 taking h = 0.01.
 - (b) Solve the following system of equations using the Gauss Seidel method.
 4x + 3y 5z = 2, x + y z = 1, 8x + y 5z = 4.
 - (c) Find $\sqrt{45}$ using Newton-Raphson method.

4 + 5 + 3 = 12

MCA/1st SEM/MCAP 1103 (BACKLOG)/2019

NUMERICAL AND STATISTICAL TECHNIQUES (MCAP 1103)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choos	10 × 1 = 10							
	(i)	The chance that a Wednesdays is	leap year	selected a	at random wi	II contain 53			
		(a) $^{2}/_{7}$	(b) 0		(c) 1	(d) ⁶ / ₇			
	(ii)	X and Y are both negative random variables, mutually independent, E(XY) = 6 and $ E(X) =2$. Then the value of E(Y) is							
		(a) 3	(b) -3		(c) 12	(d) ±3			
	(iii)	If X is normally distributed with mean 0 and variance 1, then the expectation of X^2 is							
		(a) 1	(b) 2		(c) 8	(d) 0			
	(iv)	If T_1 and T_2 are statistics with $E(T_1) = 2\theta_1 + 3\theta_2$ and $E(T_2) = \theta_1 + \theta_2$, then the unbiased estimator of θ_1 is							
		(a) $3T_2 - T_1$			(b) $3T_2 + 2T_1$				
		(c) 2T ₂ – 3T ₁			(d) 3T ₂ T ₁				
	(v)	Which of the following is Type II error? (a) The error of accepting H_0 when H_0 is false (b) The error of accepting H_0 when H_0 is true							
		(c) The error of rej	ecting H ₀ wh	en Hois tru	ue				
		(a) The error of rejecting H_0 when H_0 is false.							

MCA/1ST SEM/MCAP 1103 (BACKLOG)/2019

- (vi) If f(x) is continuous in the interval (*a*, *b*) and if f(a) and f(b) are opposite signs, then there is
 - (a) at least one root of f(x) = 0 between *a* and *b*
 - (b) at most one root of f(x) = 0 between a and b
 - (c) there is no real root of f(x) = 0 between *a* and *b*

(d) none of these.

- (vii) Which of the following does not always guarantee the convergence?
 (a) Secant method
 (b) Regular falsi method
 (c) Bisection method
 (d) Newton raphson method.
- (viii) The degree of precision of Simpson's 1/3 rule is (a) 0 (b) 2 (c) 1 (d) 3.
- (ix) The number significant figure in 0.0340980 is (a) five (b) six (c) seven (d) three.
- (x) The relation between shift operator 'E' and forward difference operator ' Δ ' is given by (a) $\Delta = 1 - E$ (b) $E = 1 + \Delta$ (c) $E = \Delta$ (d) $E = \Delta + 2$.

Group – B

- 2. (a) For any two events A_1 and A_2 , prove that
 - (i) $P(A_1 \cup A_2) = P(A_1) + P(A_2) P(A_1 \cap A_2)$
 - (ii) $P(A_1 \cup A_2) \le P(A_1) + P(A_2)$
 - (iii) $P(A_1 \cap A_2) \ge P(A_1) + P(A_2) 1$
 - (b) Find the probability that in the throw of two unbiased dice the sum of points will be even or less than 5.

(5 + 1 + 1) + 5 = 12

- 3. (a) Three balls are drawn at random from a bag containing 5 white and 3 black balls. If X denotes the number of white balls drawn, find the probability distribution of X, E(X) and Var(X).
 - (b) State Chebyshev's inequality and explain it's significance. The length of a knife is on average 5 inches long, with a standard deviation of 1/10th of 1 inch. What % of observations will be between 4.75 and 5.25 inches long?

(3 + 1 + 2) + (2 + 1 + 3) = 12

MCA/1st SEM/MCAP 1103 (BACKLOG)/2019

Group – C

- 4. (a) If X_1 , X_2 , X_3 , X_4 , X_5 and X_6 are independent simple random sample from a normal population with unknown variance σ^2 , find k so that k [$(X_1 - X_2)^2 + (X_3 - X_4)^2 + (X_5 - X_6)^2$] is an unbiased estimator of σ^2 .
 - (b) A random sample of 200 apples was drawn from a very large-sized consignment and 25 of them were found to be bad. Find the unbiased estimate of variance of sample proportion of bad apples.

6 + 6 = 12

- 5. (a) Define the following, in context of hypothesis testing: power of a test, level of significance and unbiased test.
 - (b) In order to test whether a coin is unbiased, the coin is tossed 5 times and the null hypothesis of unbiasedness of the coin is rejected if no head or 5 heads are obtained. (i) What is the probability of Type I error? (ii) Find the probability of Type II error when the corresponding probability of head is 0.3.

(2+2+2) + (3+3) = 12

Group – D

- 6. (a) What is relative error and percentage error?
 - (b) Given: Construct the difference table and compute i) f(1.5) ii) f(7.5). From the table given below.

Х	1	2	3	4	5	6	7	8
у	1	8	27	64	125	216	343	512

2 + 10 = 12

- 7. (a) Establish Newton's forward interpolation formula.
 - (b) Evaluate $\int_0^1 \sqrt{(1-x^3)} dx$ using Simpson's 1/3rd rule dividing the range into 10 intervals.
 - (c) What is the geometrical significance of Trapezoidal method?

5 + 4 + 3 = 12

Group – E

8. (a) Evaluate y(0.1) using Euler's method $\frac{dy}{dx} = \frac{y-x}{y+x}$, y(0) = 1 taking h = 0.02.

MCAP 1103

MCAP 1103

3