B.TECH/EE / 5TH SEM/ELEC 3103 /201 9

SIGNALS & SYSTEMS

(ELEC 3103)

Time Allotted : 3 hrs Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
	- (i) The function $f(t) = \frac{\sin (\pi t)}{\pi t}$, for $-\infty < t < \infty$, oscillates with increasing t. The nature of function is (a) even function (b) (b) odd function (c) odd periodic function (d) (d) even periodic function.
	- (ii) The even component of the signal $x(t) = u(t) u(t-1)$ with $u(t) = unit\ step\ function$ is (a) $x_e(t) = \begin{cases} 1 & \text{for } -1 \leq t \leq 2 \\ 0 & \text{; elsewhere} \end{cases}$

(b) $x_e(t) = \begin{cases} 0.5 & \text{for } -1 \leq t \leq 1 \\ 0 & \text{; elsewhere} \end{cases}$ (c) $x_e(t) = \begin{cases} 0.5 \\ -0.5 \end{cases}$ -0.5 for $0 \le t \le 1$
; elesewhere

(d) $x_e(t) = \begin{cases} 0.5 \\ -0.5 \end{cases}$ − 0.50 for $0 \le t \le 1$
; $-1 \le t \le 0$

(iii) The Parseval's identity states that the energy (E) content of the signal $x(t)$ is equal to (a) $E = \int_{-\infty}^{\infty} \left| \frac{x(t)}{\sqrt{2}} \right|^2 dt = \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega$

(b)
$$
E = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} \left| \frac{1}{2\pi} X(\omega) \right|^2 d\omega
$$

\n(c) $E = \int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega$
\n(d) $E = \int_{-\infty}^{\infty} |x(t)|^2 dt = 2\pi \int_{-\infty}^{\infty} \left| \frac{X(\omega)}{\sqrt{2}} \right|^2 d\omega$

ELEC 3103

1

B.TECH/EE/5TH SEM/ELEC 3103/2019

- (iv) The R.O.C of $z transform$ for the discrete signal $x(n) =$ $2(3^n)u(-n)$ (non-causal signal) is (a) R.O.C : Outside the unit circle of $z -$ plane (b) $R.O.C : |z| > 3$ (c) $R.O.C$: Complete $z -$ complex plane (d) R.O.C : $|z| < 3$.
- (v) A Fourier Transform $X(\omega)$ of a real aperiodic signal $x(t)$ will have the amplitude and phase spectrum characteristics as
	- (a) even and even spectrums
	- (b) odd and even spectrums
	- (c) even and odd spectrums
	- (d) odd and oven spectrums.
- (vi) The transfer function $H(z)$ of the system represented by the given difference equation $y(n) = y(n - 1) + y(n - 2) + x(n) + 2x(n - 1)$ with zero initial conditions, is

(a)
$$
H(z) = \frac{1+2z^{-1}}{1+z^{-1}+z^{-2}}
$$

\n(b) $H(z) = \frac{1+z^{-1}}{1+z^{-1}+z^{-2}}$
\n(c) $H(z) = \frac{1+z^{-1}}{1-z^{-1}-z^{-2}}$
\n(d) $H(z) = \frac{1+2z^{-1}}{1-z^{-1}-z^{-2}}$

- (vii) The convolution integral of two signals $(i.e. h(t) * x(t)) h(t) = e$ $e^{-2t}u(t)$ and $x(t) = e^{-3t}u(t)$ is (a) $(e^{-3t} - e^{-2t})u(t)$ (b) $(e^{-2t} + e^{-3t})u(t)$ (c) $(e^{-2t} - e^{-3t})u(t)$ (d) $(e^{-2t})(e^{-3t})u(t)$.
- (viii) A unit step response for a standard form of a first-order system $G(s) = \frac{K}{s}$ $\frac{R}{s+1}$ takes 2 second to reach 63.2% of its final value 10 units. The transfer function of the system $G(s)$ is \overline{a}

(a)
$$
G(s) = \frac{2}{2s+1}
$$

\n(b) $G(s) = \frac{10}{2s+1}$
\n(c) $G(s) = \frac{10}{s+\frac{1}{2}}$
\n(d) $G(s) = \frac{1}{2s+1}$

(ix) The transfer function $G(s)$ for the state-space system matrices $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$; $b = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $c = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is given by (a) $G(s) = \frac{s}{s^2}$ s^2-1 (b) $G(s) = \frac{s}{a^2}$ $rac{3}{s^2+1}$ (c) $G(s) = \frac{1}{s^2}$ $s^2 + 1$ (d) $G(s) = \frac{1}{s^2}$ $rac{1}{s^2-1}$.

B.TECH/EE/5TH SEM/ELEC 3103/2019

- 9. (a) A series $R L C$ circuit having the circuit parameters $R = 2\Omega$, $L =$ 1*H* and $C = 0.2F$ respectively, is excited with an input $u(t)$. Obtain the state space model of the system, assuming the voltage across the capacitor ($x_1(t) = v_c(t)$) and its derivative ($x_2(t) = \dot{v}_c(t)$) as the state variables.
- (b) Convert the state-space model as obtained in $Q.9$ (a) to an equivalent transferfunction model $G(s)$. Is the system stable? Justify your answer. **6 + 6=12**

\n- (x) The steady-state output
$$
(y(t))
$$
 response of a first order system $G(s) = \frac{3}{(s+0.4)}$ due to sinusoidal input $u(t) = \sin 2t$ is
\n- (a) $y(t) = 3\sin(2t + 158.6(\deg.))$
\n- (b) $y(t) = 1.47\sin(2t + 1.38(\text{rad}))$
\n- (c) $y(t) = 3\sin(2t - 158.6(\deg.))$
\n- (d) $y(t) = 1.47\sin(2t - 2.77(\text{rad}))$
\n

Group – B

- 2. (a) Prove that $\delta(at) = \frac{1}{|a|} \delta(t)$, where, $\delta(t)$ is unit impulse signal and '*a*' is a real number.
- (b) Find out the normalized energy and power of the signal $x(t) = e^{-2t}u(t)$ and hence comment on whether it is an energy or a power signal.
- (c) Find the graphical convolution of the following two signals $x(t) = u(t-3) - u(t-5)$ and $h(t) = e^{-3t}u(t)$.

 3+ 3 + 6 =12

3. (a) Find the Exponential Fourier Series for the signal shown in Fig.1. Hence, also find out the trigonometric Fourier Series coefficients.

(b) Obtain the Fourier Transform of the signal $x(t)$ shown in Fig.2 and also sketch its amplitude spectrum.

B.TECH/EE/5TH SEM/ELEC 3103/2019

Group – C

- 4. (a) If $x(n) \leftrightarrow X(z)$ with R.O.C R_x then show that $\lim_{n \to \infty} x(n) = \lim_{n \to 1} (1 (z^{-1})$ provided $x(\infty)$ exists.
	- (b) Find the impulse response of the causal discrete-time system with transfer function $G(z) = \frac{z}{z-1}$ $\left(z-\frac{1}{2}\right)$ $\frac{1}{2}$ $\left(z-\frac{1}{3}\right)$ $\frac{1}{3}$ using inverse integral (residue) method. Discuss the pitfalls of this method.

 $5 + 7 = 12$

- 5. (a) If $x_1(n) \leftrightarrow X_1(z)$; R.O.C: R_{x_1} and $x_2(n) \leftrightarrow X_2(z)$; R.O.C: R_{x_2} then show that z-transform of $[x_1(m) * x_2(m)] \leftrightarrow X_1(z)X_2(z)$.
	- (b) Obtain the input-output expression in difference equation from the causal transfer function model $G(z) = \frac{0.25z^{-1} + 0.2z^{-2}}{1.8z^{-1} + 0.8z^{-2}}$ $\frac{0.232 + 0.22}{1 - 0.62^{-1} + 0.052^{-2}}$ · Is the given system stable? Find the R.O.C of the given transfer function $G(z)$

$$
5+7=12
$$

Group – D

- 6. (a) Show that a causal LTI continuous system is input-output stable if, and only if, its impulse response $h(t)$ satisfies $\int_0^\infty |h(t)| dt < \infty$. $\bf{0}$
	- (b) For the impulse response $h(t) = (1 e^{-4t})$ of a system, determine whether the corresponding system is (i) causal (ii) stable (based on the above definition of stability).

 $6 + 6 = 12$

- 7.(a) State and explain Lagrange's equation for the analysis of the motion of a dynamic system.
- (b) What do you mean by the frequency response of a continuous time system $G(s)$? Discuss briefly.

5+7 = 12

Group – E

- 8. (a) Define the following terms: State, State vector and State space of a dynamical system.
	- (b) Consider the state space model given below:

$$
\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 0 & -4 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} u(t) \text{ (state eq.)};
$$

$$
y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \text{ (output eq.)}
$$

Obtain the solution of state space equation and output response with the following initial conditions $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix}$ $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\frac{1}{2}$ and unit impulse input $(t) = \delta(t)$.

 $5 + 7 = 12$