B.TECH/EE/3RD SEM/ELEC 2102/2019

- (b) Explain in detail how can you construct a 16:1 MUX using 8:1 MUX and external gate.
- (c) Design a combinational circuit that converts a four bit binary number to a four bit Gray code number. Implement the circuit using suitable logic gates.

2 + 5 + 5 = 12

Group – E

- 8. (a) What is the difference between a latch and an edge triggered flip-flop?
 - (b) Draw the circuit diagram of a clocked S-R flip-flop using NAND gates and explain its principle of operation.
 - (c) Design a T flip flop using S-R flip-flop.

2 + 5 + 5 = 12

- 9. (a) What is the difference between an asynchronous and a synchronous counter?
 - (b) Design a Mod-8 asynchronous up counter using J-K flip flop and explain its working principle. Draw the timing diagram.
 - (c) Design a 4 bit shift register using D flip flop and explain its operation for right shift mode.

2 + 5 + 5 = 12

B.TECH/EE/3RD SEM/ELEC 2102/2019

ANALOG & DIGITAL ELECTRONICS (ELEC 2102)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

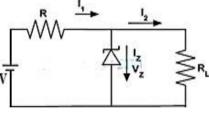
- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - (i) The output of a differentiator circuit with square wave input is
 (a) triangular wave
 (b) impulse
 (c) parabola
 (d) step.
 - (ii) Schmitt trigger is also known as

 (a) squaring circuit
 (b) blocking oscillator
 (c) sweep circuit
 (d) astable multivibrator.
 - (iii) Let us consider an op-amp having a slew rate of 6 V/ μ S. The undistorted peak-peak output voltage for an input sine wave of 2 MHz frequency is
 - (a) 1.5 V (b) 0.95 V (c) 0.47 V (d) 3 V.
 - (iv) Which of the following oscillators uses one inductor and two capacitors in the feedback circuit?
 (a) Hartley oscillator
 (b) Colpitts oscillator
 (c) Wien bridge oscillator
 (d) Phase shift oscillator.
 - (v) The loop gain of an oscillator should be
 (a) zero
 (b) unity
 (c) 29
 (d) 3.
 - (vi) Which of the following is a weighted code?
 (a) 2421
 (b) Excess-3
 (c) Gray
 (d) All of the above.
 - (vii) The minimum number of NAND gates required to construct an XOR gate is (a) 3 (b) 4 (c) 5 (d) 8.

ELEC 2102

1

B.TECH/EE/3RD SEM/ELEC 2102/2019

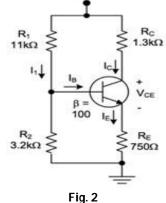

- (viii) The fundamental frequency of a crystal oscillator is
 - (a) directly proportional to the thickness of the crystal
 - (b) inversely proportional to the thickness of the crystal
 - (c) independent of the thickness of the crystal
 - (d) proportional to the temperature of the crystal.
- (ix) A latch is _____ sensitive
 (a) both level and edge
 (b) edge
 (c) level
 (d) neither level nor edge.
- (x) The number of flip-flops required to construct a Mod-32 binary counter is (a) 3 (b) 4 (c) 5 (d) 8.

Group – B

2. (a) Realize the following linear differential equation using minimum number of $\mbox{OP-AMP}_{\mbox{S}}$

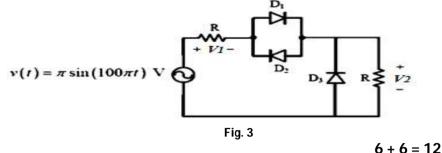
$$2 \frac{d^2 y}{dt^2} + 3 \frac{d y}{dt} + 2y = 10$$

(b) Calculate the load voltage, I_1 , I_2 and I_z for the circuit shown in Fig. 1. Given that breakdown voltage of the zener diode is 5V, $R = 1k\Omega$ and $R_L = 1.2k\Omega$. Also determine the power consumed by the zener diode.



= 9V

(c) Define input offset voltage of an OP-AMP.


6 + 5 + 1 = 12

3. (a) Determine the collector current I_c and collector-toemitter voltage V_{CE} of the circuit shown in Fig. 2.

B.TECH/EE/3RD SEM/ELEC 2102/2019

(b) For the circuit shown in Fig. 3, assuming diodes D_1 , D_2 and D_3 to be ideal, determine the DC components of voltages V_1 and V_2 .

- 4. (a) Design an RC phase shift oscillator with oscillation frequency, $f_0 = 200$ Hz.
 - (b) State and explain Barkhausen criteria.
 - (c) Draw a neat diagram of Hartley oscillator and derive the expression of oscillation frequency.

3 + 2 + 7 = 12

- 5. (a) Draw and explain the circuit of a triangular wave generator using two operational amplifiers where, one is used as a comparator and the other one is used as an integrator.
 - (b) Draw a neat circuit diagram of a monostable multivibrator using op amp. Explain its principle of operation. Draw the output and capacitor voltage waveforms. Derive the expression of timing period. 4 + 8 = 12

Group – D

- 6. (a) What do you mean by a combinational circuit? Give two examples of combinational circuits.
 - (b) Apply the knowledge of K map to simplify the following Boolean function and implement it using suitable logic gates: $F(A,B,C,D) = \sum_{m} (0,1,2,8,10,11,14,15) + \sum_{d} (3,13).$
 - (c) Design a full adder using NAND gate only.

2 + 5 + 5 = 12

7. (a) What is a decoder? What are its applications?

ELEC 2102

2