B.TECH/EE/IT/ME/3RD SEM/PHYS 2001(BACKLOG)/2019

Group – E

- 8. (a) Define super conductivity. Why superconducting state is said to be perfectly diamagnetic.
 - (b) Establish London equation of superconductivity in terms of magnetic field induction and hence describe Meissner effect?
 - (c) What is the critical magnetic field for a superconductor? How does it vary with temperature?

(2+2) + (3+2) + 3 = 12

- 9. (a) The energy versus wave vector relationship for a conduction electron in a semiconductor is $E = \frac{4\hbar^2 k^2}{m_0}$. Determine the electron effective mass.
 - (b) The energy-wave vector dispersion relation for a one dimensional crystal of lattice constant 'a' is given by $E(\kappa) = E_0 + 3\alpha\kappa^2 + 2\beta\kappa^4$, where E_0 , α , β are positive constants. Find the expression for the velocity of the electron as a function of κ . For what value of κ the velocity is maximum?
 - (c) State and explain Bloch theorem for an electron in a periodic lattice in one dimension.

3 + (2 + 2) + (2 + 3) = 12

B.TECH/EE/IT/ME/3RD SEM/PHYS 2001 (BACKLOG)/2019

PHYSICS - II (PHYS 2001)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choose the correct alternative for the following:				$10 \times 1 = 10$
	(i)	Ferrites are example (a) diamagnetism (c) ferromagnetism	of	(b) paramagne (d) ferrimagne	tism tisms.
	(ii)	The dimension of $\mu_0 \epsilon$ (a) L ⁻² T ⁻²	² 0 is (b) L ⁻² T ²	(c) LT-1	(d) L-1T-1.
	(iii) Which of the following function is an eigen function of the ope				perator $\frac{d^2}{dx^2}$?
		(a) $\phi = clnx$	(b) $Ø = cx^2$	(c) $\emptyset = ce^{-mx}$	(d) $\emptyset = \frac{c}{x}$.
	(iv) The 1 st excited state energy of a particle moving in a one-dim potential box is given in terms of length l of the box by (a) $\frac{4h^2}{8ml^2}$ (b) $\frac{h^2}{8ml^2}$ (c) $\frac{2h^2}{8ml^2}$				ne-dimensional (d) $\frac{4\hbar^2}{8m/2}$
	(v)	The number of mean compartments is	ngful ways in which 3 fermions can be arranged in 3		
		(a) 1	(b) 3	(C) 6	(d) 9.
	(vi)	The operator corresponding to the momentum of moving particle is (a) $\hat{p} = -i\hbar \frac{\partial}{\partial x}$ (b) $\hat{p} = i\hbar \frac{\partial}{\partial t}$			rticle is
		(c) $\hat{p} = \hbar \frac{\partial}{\partial x}$		(d) $\hat{p} = -\frac{1}{i\hbar} \frac{\partial}{\partial x}$	
	(vii) The average energy of an electron in a metal in terms of Fermi e the Fermi level is				mi energy <i>E_f</i> at
		(a) $\frac{3}{5}E_{f}$	(b) $\frac{1}{3}E_{f}$	(c) $\frac{3}{2}E_{f}$	(d) $\frac{3}{4}E_f$

1

B.TECH/EE/IT/ME/3RD SEM/PHYS 2001(BACKLOG)/2019

(viii) The density of charge carrier in a pure semiconductor is proportional to (a) $e^{\frac{-E_g}{KT}}$ (b) $e^{\frac{-E_g}{2KT}}$ (c) $e^{\frac{-2E_g}{KT}}$ (d) $e^{\frac{-E_g}{T}}$

(ix) The lagrangian of a system is a function of
(a)
$$q_j, p_j, t$$
 (b) q_j, \dot{q}_j, t (c) \dot{p}_j, q_j, t (d) p_j, \dot{q}_j, t

(x) The paramagnetic susceptibility of a material varies as (a) T (b) $\frac{1}{T}$ (c) T² (d) $\frac{1}{T^2}$

Group – B

- 2. (a) Write down the constraint equations for a particle slipping down an inclined plane and also derive the Lagrange equation of motion for the said system.
 - (b) If Lagrangian of the system is independent of the time, show that the Hamiltonian of the system is conserved
 - (c) The Hamiltonian of a system is given by $H = \frac{1}{2}(p^2 + q^2)$. Where p and q are canonically conjugate variables. Write the Hamilton's equations of motion. Hence show that $\ddot{p} = -p$ for the system.

(2+3)+3+(2+2)=12

- 3. (a) What is the physical interpretation of wave function? How is wave function related to the probability of finding a particle at any point in space at a given time?
 - (b) If the wave function $\varphi(x)$ of a quantum mechanical particle is given by $\varphi(x) = a \sin \frac{\pi x}{L}$, for $0 \le x \le L$

= 0, for $0 \ge x \ge L$, then determine the value of a. Also determine the value of x where the probability of finding the particle is maximum.

(c) An electron is bound by potential which closely approaches an infinite square well of width $2.5 \times 10^{-10}m$. Calculate the lowest three permissible quantum energies the electron can have.

(2+2) + (3+2) + 3 = 12

Group – C

- 4. (a) Plot the Fermi distribution function for T = 0K and T > 0K in metal and explain their significance.
 - (b) Assume that in Tungsten (At. Wt. 183.8 and density 19.3 gm/cc) there are two free electrons per atom. Calculate the Fermi-energy and electron density. [Mass of electron= 9.1×10^{-28} gm; Avogadro's number = 6.02×10^{-23} and h = 6.62×10^{-27} erg-sec]

B.TECH/EE/IT/ME/3RD SEM/PHYS 2001(BACKLOG)/2019

- (c) Show that the average speed of the free electron at 0K is $\frac{3}{4}th$ of the Fermi velocity (v_F). [Given that: g(E)dE=4 π V(2m/h²)^{3/2}E^{1/2}dE, symbols have their usual meaning]
- (d) Obtain Planck's formula for black body radiation using B-E statistics.
 3 + 3 + 3 + 3 = 12
- 5. (a) Using Fermi-Dirac distribution, Calculate the concentration of electrons in the conduction band of an intrinsic semiconductor.
 - (b) Four particles are distributed into three energy levels having energies 0, E, 3E so that the total energy is 6E. If the levels are degenerate with degeneracy 2, 2, 3 respectively, find out the macrostates and the corresponding microstates for M-B particles, F-D particles and B-E particles.
 - (c) Compare M-B, F-D and B-E statistics mentioning at least three characteristics.

4 + (2 + 2 + 2) + 2 = 12

Group – D

- 6. (a) Establish the relation between electronic polarizability and atomic volume of a dielectric material.
 - (b) An assembly of parallel plate capacitors having area 6.45×10^{-4} m² and plate separation 0.002 m is connected with external potential 10 V. If the capacitors filled up with a dielectric material with dielectric constant value of 6.0, calculate (i) value of capacitance (ii) amount of charge stored on each plate (iii) value of electric displacement vector.
 - (c) Define H in terms of B and M for a linear magnetic material. Give an example of a nonlinear magnetic material.

3 + (2 + 2 + 2) + 3 = 12

- 7. (a) Define magnetization. Obtain the relation $\mu = \mu_0 (1 + \chi_m)$, symbols have their usual meaning.
 - (b) Compare diamagnetic, paramagnetic and ferromagnetic substances.
 - (c) In hydrogen atom, an electron revolves around a nucleus in an orbit of 0.54×10^{-10} m radius. If the frequency of revolution of an electron is 6.8×10^{15} Hz, find the magnetic moment of the orbiting electron and calculate numerical value of Bohr magneton.

(2+3)+3+(2+2)=12