B.TECH/AEIE/CSE/7TH SEM/MATH 4182/2019

Let V and W be vector spaces over a field F. T: $V \rightarrow W$ be a linear mapping. (b) Then prove that Ker $T = \{\alpha \in V: T(\alpha) = \theta'\}$, where, θ' is the zero vector in W, is a subspace of V.

6 + 6 = 12

- 9. (a) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ and $S: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(x, y) = (2x + y, 0), (x, y) \in \mathbb{R}^2$ and $S(x, y) = (x + y, xy), (x, y) \in \mathbb{R}^2$ respectively. Determine whether S \circ T is a linear transformation.
 - Determine the linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^2$ which maps the basis vectors (b) $\{(1,0,0), (0,1,0), (0,0,1)\}$ of \mathbb{R}^3 to the vectors $\{(1,1), (2,3), (3,2)\}$ of \mathbb{R}^2 respectively. Verify Rank-Nullity theorem.

6 + 6 = 12

B.TECH/AEIE/CSE/7TH SEM/MATH 4182/2019

LINEAR ALGEBRA (MATH 4182)

Time Allotted : 3 hrs

Full Marks: 70

 $\begin{bmatrix} 3 & 6 & 0 \end{bmatrix}$

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and any 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

۱.	Choos	se the correct alterna	10 × 1 = 10		
	(i)	The product of the ei (a) traceA	gen values of a sc (b) det A	uare matrix A is (c) 0	(d) 1.
(ii) The geometric multiplicity of the eigenvalue 0 of the				ue 0 of the matrix $A = \left(\cdot \right)^{-1}$	$ \begin{array}{ccc} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 0 & 0 & 1 \end{array} \right) $ is
		(a) 0	(b) 1	(c) 2	(d) 3.
	(iii)	If the nullity of the m	the matrix $\begin{pmatrix} k & 1 & 2 \\ 1 & -1 & -2 \\ 1 & 1 & 4 \end{pmatrix}$ is 1, then the value of k is		sis
		(a) -1	(b) 0	(c) 1	(d) 2.
	(iv)	The linear map $T: \mathbb{R}^4$ the standard basis is (a) $T(x, y, z, w) = (z, w)$	$\rightarrow \mathbb{R}^4$ of the matrix v, x, w	Tix $M = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ (b) $T(x, y, z, w) = (0)$	with respect to (x, w, y)
		(c) $T(x, y, z, w) = (z, y, z, w)$	(x, w, y)	(d) $T(x, y, z, w) = (x + y)$	x - y, 0, y, w).
	(v) Let $T:P_3[0,1] \rightarrow P_2[0,1]$ be defined by $(Tp)(x) = p''(x) - representation of T with respect to the bases \{1, x, x\}and P_2[0,1] respectively is\begin{pmatrix} 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 & 1 \end{pmatrix}$			Tp)(x) = p''(x) + p'(x). T ne bases $\{1, x, x^2, x^3\}$ and $(0 \ 2 \ 1 \ 0)$	Then the matrix $\{1, x, x^2\}$ of $P_3[0, 1]$ $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$
		(a) $\begin{vmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 0 & 6 & 3 \end{vmatrix}$ (b	$ \begin{pmatrix} 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 3 \end{pmatrix} $	(C) $\begin{pmatrix} 6 & 2 & 0 & 0 \\ 3 & 0 & 0 & 0 \end{pmatrix}$	(d) $\begin{vmatrix} 0 & 0 & 1 \\ 0 & 2 & 2 \\ 3 & 6 & 0 \end{vmatrix}$.

B.TECH/AEIE/CSE/7TH SEM/MATH 4182/2019

- Consider the following vectors in \mathbb{R}^3 : $u_1 = (1,2,1)$, $u_2 = (2,1,-4)$, $u_3 = (2,1,-4)$, $u_4 = (2,1,-4)$, $u_5 = (2,1,-4)$, $u_{1,2} = (2,1,-4)$, $u_{2,3} = (2,1,-4)$, $u_{3,3} = (2,1,-4)$ (vi) (3, -2, 1). Which one of the following statement is true?
 - (a) u_1 is parallel to u_2
 - (b) u_2 is parallel to u_3
 - (c) all of them are orthogonal to each other
 - (d) only u_1 and u_2 are orthogonal to each other but u_3 is not.
- (vii) The dimension of the subspace $\{(x_1, x_2, x_3, x_4, x_5): 3x_1 - x_2 + x_3 = 0\}$ of \mathbb{R}^5 is (a) 1 (c) 3 (d) 4 (b) 2
- (viii) The dimension of a vector space is
 - (a) the number of vectors in a basis
 - (b) the number of subspaces
 - (c) the dimension of its subspaces
 - (d) the number of vectors in a spanning subset.
- (ix) For a diagonalisable square matrix which one of the followings is not true?
 - (a) all its eigen vectors are linearly independent
 - (b) all its eigen values are regular
 - (c) all its eigen values are distinct

(c) $a^2 + 5ab - b^2$

- (d) it is similar to a diagonal matrix.
- The real quadratic form in two variables a, b associated with the matrix (x) $\begin{pmatrix} 5 & 1 \\ 1 & -1 \end{pmatrix}$ is (b) $5a^2 - 2ab + b^2$ (d) $a^2 - 5ab + b^2$. (a) $5a^2 + 2ab - b^2$

Group – B

- Find an orthogonal matrix *P* such that $D = P^{-1}BP$ is diagonal, where, 2. (a) (1 -3 3) $B = \begin{vmatrix} 3 & -5 & 3 \end{vmatrix}$ 6 -6 4
 - (b) Reduce the quadratic form $Q(x, y, z) = x^2 + 2y^2 + 3z^2 - 2xy + 4yz$ to the normal form and show that it is indefinite. Find the rank and signature of *Q*.

6 + 6 = 12

- Find the Singular Value Decomposition of $A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix}$. 3. (a)
 - Find the generalized inverse *G* of the matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$. (b)

8 + 4 = 12

B.TECH/AEIE/CSE/7TH SEM/MATH 4182/2019

Group – C

- Let Uand W be two subspaces of a vector space V over a field F. Then 4. (a) prove that U+W is a subspace of V, where, U+W = $\{u+w: u \in U, w \in W\}$ is the linear sum of the subspaces U and W.
 - Examine whether the set S is a subspace of the vector space \mathbb{R}_{22} where, S is (b) the set of all 2×2 real diagonal matrices.

6 + 6 = 12

5. (a) Find for what values of h the following set of vectors is linearly independent.

$$\left\{ v_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, v_2 = \begin{bmatrix} h\\1\\-h \end{bmatrix}, v_3 = \begin{bmatrix} 1\\2h\\3h+1 \end{bmatrix} \right\}$$

Find a basis and the dimension of the subspaces S, T and $S \cap T$ of \mathbb{R}^3 where (b) $S = \{(x, y, z) \in \mathbb{R}^3 : x + 2y - z = 0\}$ and $T = \{(x, y, z) \in \mathbb{R}^4 : 2x - y + y = 0\}$ 3z = 0. Also find the dimension of the subspace S + T of \mathbb{R}^3 .

5 + 7 = 12

Group – D

- 6. (a) Use Gram-Schmidt process to obtain an orthonormal basis of the subspace of the Euclidean space \mathbb{R}^4 with standard inner product, generated by the linearly independent set $\{(1,1,0,1), (1,1,0,0), (0,1,0,1)\}$.
 - Consider f(t)=3t-5, $g(t)=t^2$ in the polynomial space P(t) with inner (b)

6 + 6 = 12

- Prove that an orthogonal set of nonzero vectors in a Euclidean space V is 7. (a) linearly independent.
 - Let S consist of the following vectors in \mathbb{R}^4 : $u_1 = (1,1,0,-1), u_2 =$ (b) $(1,2,1,3), u_3 = (1,1,-9,2), u_4 = (16,-13,1,3)$. Show that S is orthogonal and a basis of \mathbb{R}^4 . 6 + 6 = 12

Group – E

8. (a) Let V be a vector space of n-square real matrices and M be an arbitrary but fixed matrix in V. T: $V \rightarrow V$ be defined by T(A) = AM + MA, where, A is any matrix in V. Examine if T is linear.

MATH 4182

MATH 4182

3