B.TECH/CSE/3RD SEM/ECEN 2104 (BACKLOG)/2019

DIGITAL LOGIC (ECEN 2104)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choose the correct alternative for the following:					10 × 1 = 10	
	(i)	 The data format used to store data in a digita (a) Octal (c) Decimal 			l computer is (b) BCD (d) Hexadecimal.		
	(ii)	Minterm corresp (a) ABCD	onding to decimal (b) A'B'C'D'	number ´ (c) A+B	15 is +C+D	(d) A'+B'+C'+D'.	
	(iii)) A Flip Flop is a /an (a) monostable circuit (c) astable Circuit			(b) bistable circuit (d) none of these.		
	(iv)	A combinational (a) never contain (b) always contai (c) may sometim (d) contains only	circuit s memory element ns memory elemen es contain memory memory element.	: nt v element			
	(v)	MUX can be used (a) Flip flop (c) Logic element	as		(b) Counter (d) 7 segmen	nt LED driver.	
	(vi)	An n-bit parallel adder consists of (a) (n+1) full-adders (c) n full-adders			(b) (n-1) full-adders (d) 2n full-adders.		
	(vii)	Gray Code of (11) (a) 101111	0101)₂is (b) 100110	(C)	111010	(d) 101011.	

1

B.TECH/CSE/3RD SEM/ECEN 2104 (BACKLOG)/2019

(viii)	Race around condition is avoided using				
	(a) J-K flip flop	(b) look ahead carry generator			
	(c) edge triggered flip flop	(d) faster gates.			

- (ix) Don't care condition is
 (a) logic 0
 (b) logic 1
 (c) logic 0 or Logic 1 where ever required
 (d) none of the above.
- (x) In general, a sequential logic circuit consists of
 - (a) only flip flops
 - (b) only gates
 - (c) flip flops and combinational logic circuits
 - (d) only combinational logic circuits.

Group – B

- 2. (a) Determine the canonical sum-of-products representations of the function f(x,y,z) = z + (x' + y) (x + y')
 - (b) Design a 2-bit magnitude comparator circuit using logic gates.
 - 6 + 6 = 12
- 3. (a) Simplify the minimal sum of the products for the Boolean expression, $f(A,B,C,D) = \sum m(0,4,5,6,7,8,9,15)$ using the Quine McCluskey method.
 - (b) Simplify the expression $Y = \sum m (0, 3, 5, 7, 9, 13, 14, 15)$ using K-map method. 8 + 4 = 12

Group – C

- 4. (a) Design a full-adder circuit using half adders and necessary logic gates.
 - (b) Implement the function $f(a, b, c) = \sum m (1, 3, 5, 6)$ using a 4:1 line Multiplexer.

6 + 6 = 12

- 5. (a) Implement the following function using a 3 to 8 decoder: $S (A,B,C) = \sum m(1,2,4,7)$ $C (A,B,C) = \sum m (3,5,6,7)$
 - (b) Implement the function $f(a,b,c) = \sum m(0,1,4,6)$ using a 1-to-8 Demultiplexer.

8 + 4 = 12

B.TECH/CSE/3RD SEM/ECEN 2104 (BACKLOG)/2019

Group – D

- 6. (a) Develop the characteristic equation of J-K flip-flop from the present state next state table.
 (b) Realize a J-K flip flop using S-R flip flop.
 (c) What is race around condition?
- 7. (a) Realize D flip-flop using T flip-flop.
 - (b) Design and implement a MOD 3 synchronous counter using J-K flip-flop.

6 + 6 = 12

Group – E

- 8. Write a short note on:
 - (i) Analog to Digital converter using Successive Approximation Register (SAR).
 - (ii) Digital to Analog converter using R-2R ladder.

6 + 6 = 12

9. Write a short note on (any two): (6 × 2) = 12
(i) PLA
(ii) CMOS NAND gate
(iii) ROM.