B.TECH/CSE/3RD SEM/CSEN 2102 (BACKLOG)/2019

DISCRETE MATHEMATICS (CSEN 2102)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and anv 5 (five) from Group B to E, taking at least one from each group.

Candidates are required to give answer in their own words as far as practicable.

Group - A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$ Solution of the recurrence relation $a_n = 2a_{n-1}$ with $a_0 = 1$ is $S_n =$ (i)
 - (b) 2^{n-1} (a) 2^n (c) 2^{n+11} (d) 2.
 - The number of bit strings of length 8 that begin with 1011 are (ii) (a) 8 (b) 16 (d) 64. (c) 32
 - (iii) The chromatic number of the cycle having seven vertices is (a) 2 (b) 3 (c) 4 (d) 1.
 - (iv) The chromatic polynomial of a tree having six vertices is (a) $x(x-1)^2$ (b) $x(x-1)^3$ (c) $x^6 - 1$ (d) $x(x-1)^5$.
 - Which of the following graphs is non-planar? (v) (a) K_4 (b) K_{3} (c) K_6 (d) C_6 .
 - If a planar graph determines 10 regions, then the number of vertices of its dual is (vi) (a) 8(b) 9 (C) 10 (d) 11.
 - (vii) If a graph has three vertices and no edges, then its chromatic number is (a) 2 (b) 3 (c) 0 (d) 1. (viii) $\sim (\sim (\sim p)) \equiv$ (a) p

- B.TECH/CSE/3RD SEM/CSEN 2102 (BACKLOG)/2019
 - (ix) Converse of $p \rightarrow q$ is (a) $p \rightarrow q$ (b) $\sim q \rightarrow \sim p$ (C) $\sim q \rightarrow p$ (d) ~ $p \rightarrow q$.
 - (X) $\sim (\forall x \forall y P(x, y))$ (a) $\exists x \forall y \sim P(x, y)$ (b) $\exists x \exists y P(x, y)$ (d) $\exists x \exists y \sim P(x, y)$. (C) ~ $(\exists x \forall y P(x, y))$

Group - B

- 2. (a) Using the truth table show that $p \rightarrow (q \lor r) \equiv (p \rightarrow q) \lor (p \rightarrow r).$
 - (b) If *p*: Today is Friday. q: It is raining. *r*: It is hot. Write the statement against the following symbol (i) $\sim q \rightarrow (r \wedge p)$ (ii) $(p \lor q) \leftrightarrow r$ (iii) $(p \wedge \sim q) \rightarrow \sim r$.

6 + (2 + 2 + 2) = 12

- 3. Find whether the conclusion C follows from the premises H_1, H_2, H_3 in the (a) following case, using the truth table: $H_1: p \lor q, H_2: p \to r, H_2: q \to r, C: r$.
 - (b) Show that $\{(p \land \sim q) \rightarrow r\} \rightarrow \{p \rightarrow (q \lor r)\}$ is a tautology.

6 + 6 = 12

Group - C

- 4. (a) A man buys 3 cows, 2 pigs and 4 hens from another person who has 7 cows. 6 pigs and 8 hens. How many choices does the man have?
 - (b) Let $U = \{1, 2, 3, \dots, 1000\}$. Then find n(S) where, S = set of such integers of Uwhich are not divisible by 3, 5 or 7.

4 + 8 = 12

- (a) Using characteristic root method find the solution of the recurrence 5. relation $t_n + 9t_{n-2} = 6t_{n-1}$ subject to the initial condition $t_0 = 1$ and $t_1 = 6$.
 - (b) Using generating function solve the recurrence relation, $a_n - 7a_{n-1} + 10a_{n-2} = 2 \forall n > 1$ and $a_0 = 3$, $a_1 = 3$.

5 + 7 = 12

(c) Tautology

(b) $\sim p$

(d)~p.

4

B.TECH/CSE/3RD SEM/CSEN 2102 (BACKLOG)/2019

DISCRETE MATHEMATICS (CSEN 2102)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- Choose the correct alternative for the following: 10 × 1 = 10
 (i) Solution of the recurrence relation a_n = 2a_{n-1} with a₀ = 1 is S_n =
 - (a) 2^{n} (b) 2^{n-1} (c) 2^{n+11} (d) 2.
 - (ii) The number of bit strings of length 8 that begin with 1011 are
 (a) 8
 (b) 16
 (c) 32
 (d) 64.
 - (iii) The chromatic number of the cycle having seven vertices is
 (a) 2
 (b) 3
 (c) 4
 (d) 1.
 - (iv) The chromatic polynomial of a tree having six vertices is (a) $x(x-1)^2$ (b) $x(x-1)^3$ (c) x^6-1 (d) $x(x-1)^5$.
 - (v) Which of the following graphs is non-planar? (a) K_4 (b) K_3
 - (c) K₆
 (d) C₆.
 (vi) If a planar graph determines 10 regions, then the number of vertices of its dual is
 - (a) 8 (b) 9 (c) 10 (d) 11.
 - (vii) If a graph has three vertices and no edges, then its chromatic number is

 (a) 2
 (b) 3
 (c) 0
 (d) 1.

 (viii) ~ (~ (~ p)) ≡
 - (a) p (b) $\sim p$ (c) Tautology (d) $\sim p$.

(C) ~ $(\exists x \forall y P(x, y))$

B.TECH/CSE/3RD SEM/CSEN 2102 (BACKLOG)/2019

(ix) Converse of $p \rightarrow q$ is (a) $p \rightarrow q$

(a) $\exists x \forall y \sim P(x, y)$

(C) $\sim q \rightarrow p$

(X) $\sim (\forall x \forall y P(x, y))$

Group - B

(b) $\sim q \rightarrow \sim p$

(d) ~ $p \rightarrow q$.

(b) $\exists x \exists y P(x, y)$

(d) $\exists x \exists y \sim P(x, y)$.

- 2. (a) Using the truth table show that $p \rightarrow (q \lor r) \equiv (p \rightarrow q) \lor (p \rightarrow r)$.
 - (b) If p: Today is Friday. q: It is raining. r: It is hot. Write the statement against the following symbol (i) $\sim q \rightarrow (r \land p)$ (ii) $(p \lor q) \leftrightarrow r$ (iii) $(p \land q) \rightarrow \sim r$. 6 + (2 + 2 + 2) = 12
- 3. (a) Find whether the conclusion *C* follows from the premises H_1, H_2, H_3 in the following case, using the truth table: $H_1: p \lor q, H_2: p \to r, H_3: q \to r, C: r$.
 - (b) Show that $\{(p \land \sim q) \rightarrow r\} \rightarrow \{p \rightarrow (q \lor r)\}$ is a tautology.

6 + 6 = 12

Group – C

- 4. (a) A man buys 3 cows, 2 pigs and 4 hens from another person who has 7 cows, 6 pigs and 8 hens. How many choices does the man have?
 - (b) Let $U = \{1, 2, 3, \dots, 1000\}$. Then find n(S) where, S = set of such integers of U which are not divisible by 3, 5 or 7.

4 + 8 = 12

- 5. (a) Using characteristic root method find the solution of the recurrence relation $t_n + 9t_{n-2} = 6t_{n-1}$ subject to the initial condition $t_0 = 1$ and $t_1 = 6$.
 - (b) Using generating function solve the recurrence relation, $a_n 7a_{n-1} + 10a_{n-2} = 2 \forall n > 1$ and $a_0 = 3$, $a_1 = 3$.

5 + 7 = 12

CSEN 2102

2

B.TECH/CSE/3RD SEM/CSEN 2102 (BACKLOG)/2019

Group – D

- 6. (a) Find the chromatic polynomial of K_6 , the complete graph having 6 vertices. Show your calculations and justify your answer.
 - (b) Let *G* be a regular graph, the degree of each of its vertices being 4. Determine the number of vertices of *G* if *G* determines 10 regions.

6 + 6 = 12

- 7. (a) Prove the following result:If a graph *G* has at least one edge then the sum of the coefficients in its chromatic polynomial is 0.
 - (b) Let C_n denote the graph that is a cycle having *n* vertices. Prove that the chromatic number of C_n is
 - (i) 2 if *n* is even.
 - (ii) 3 if n is odd.

6 + 6 = 12

Group – E

- 8. (a) State Kuratowski's theorem. Use it to prove that K_6 is non-planar and K_4 is planar.
 - (b) Prove Euler's Formula: A connected planar graph G with n vertices and e edges determines f = e n + 2 regions.

6 + 6 = 12

- 9. (a) Prove that the chromatic polynomial of a having *n* vertices is $x(x-1)^{n-1}$.
 - (b) Prove that the chromatic number K_n , the complete graph having *n* vertices is *n*.

6 + 6 = 12