B.TECH/AEIE /3RD SEM/AEIE 2111/2019

MATERIAL SCIENCE AND TECHNOLOGY (AEIE 2111)

Time Allotted : 3 hrs

1.

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

Choose the correct alternative for the following: $10 \times 1 = 1$					10 × 1 = 10
(i)	Which one of the following is NOT a strong (a) van der Waals bond (c) Metallic bond			oond? (b) Covalent bond (d) Ionic bond.	
(ii)	Visible light's wavelength range: (a) 0.39 – 0.77 mm (c) 0.39 – 0.77 nm			(b) 0.39 – 0.77 μm (d) 0.39 – 0.77 cm.	
(iii)	Coordination (a) 1	number in sim (b) 2	ple cubic crysta (c) 3	l structure (d) 4.	
(iv)	Following is not the 2-dimensional imperfec (a) Twin boundary (c) Surface			tion (b) Dislocation (d) Grain boundary.	
(v)	Example for strengthening mechanism in sir (a) Strain hardening (c) Fiber strengthening			ngle-phase material (b) Precipitation hardening (d) ispersion strengthening.	
(vi)	Fracture stress (<i>o</i> _f) is proportional to (a) crack length (c) (crack length) ^{1/2}			(b) 1/crack length (d) (crack length)-1/2.	
(vii)		ule for general (b) P+F=C+1	system: (c) P+F=C-2	(d) P+F=C	+2.

1

B.TECH/AEIE /3RD SEM/AEIE 2111/2019

- (viii) Time dependent yield is known as (a)Fracture (b)Fatigue (c) Buckling (d) Creep.
- (ix) Not a characteristic property of ceramic material

 (a) high temperature stability
 (b) high mechanical strength
 (c) low elongation
 (d) low hardness
- (x) Al-alloys for engine/automobile parts are reinforced to increase their
 (a) Strength
 (b) Wear resistance
 (c) Elastic modulus
 (d) Density

Group – B

- 2. (a) Determine the number of atoms per cm³ for ice and graphite. (Given the density of ice and graphite as of 1.8 g/cm³ and 1 g/cm³ respectively).
- (b) Explain thermal expansion and define co-efficient of thermal expansion.
- (c) List the applications of LASERs and optical fibers.

(3+2) + (2+1) + 4= 12

- 3. (a) Compare among diamagnetic, paramagnetic and ferromagnetic materials with specific examples of each type.
- (b) The resistivity of pure silicon at room temperature is $3000 \ \Omega m$. Determine the intrinsic carrier density.(given mobility of electrons and holes in silicon at room temperature are $0.14 \ \& 0.05 \ m^2V^{-1}s^{-1}$ respectively).
- (c) Construct the relationship between current density and average drift velocity.
- (d) Evaluate the dielectric constant of a barium titanate crystal, which, when inserted in a parallel plate condenser of area 10 mm \times 10 mm and distance of separation of 2 mm, gives a capacitance of 10⁻⁹ F.

(3+3) + 2+ 2 + 2 = 12

- Group C
 4. (a) Establish the relation between (i) true stress & engineering stress and (ii) natural strain & engineering strain.
 - (b) Compute the line energy of dislocation in BCC iron. The burgers vector in iron is of the ½<111> type. The shear modulus of iron is 80.2 GN/m². (the lattice parameter of BCC iron is 2.87 Å)
 - (c) Explain the Maximum Shear stress yield criterion.
 - (d) Calculate the Poison's ratio and bulk modulus of stainless steel 304. (given, Young's modulus and shear modulus of SS304 are 190GPa and 74 GPa respectively)

(2+2)+3+3+(1+1)=12

B.TECH/AEIE /3RD SEM/AEIE 2111/2019

- 5. (a) In a diffusion process Ni is diffused in Fe. If the diffusion temperature is 400° C, calculate its diffusivity. (Given, D₀ = 2.6×10^{-4} m²/s & Q = 295 kJ/mol).
 - (b) Compare steady-state and non-steady-state diffusion.
 - (c) Differentiate between slip and twining.
 - (d) The dislocation density in a Cu sample is increased by cold working from 10⁹ m/m³ to 10¹³ m/m³. Determine the free energy change during recrystallization.

3+3+3+3=12

Group – D

- 6. (a) Draw unary phase diagram of water and explain it. Indicate the steps to find equilibrium concentration of phases and equilibrium relative amount of phases.
 - (b) Calculate the critical free energy of nucleation of ice from water at (i) -5°C and (ii) -40°C. The enthalpy of fusion of ice is 6.02KJ/mol. The energy of the icewater interface, 0.076 J/m², can be taken to be independent of temperature and the molar volume of ice is 19 cm³.

(4 + 4) + 4 = 12

- 7. (a) The Young's modulus of a certain material is 180 GN/m² and its true surface energy is 1.44 J/m². The crack length is 4 μm. Calculate its fracture strength. If the actual fracture strength is 1.1 GN/m², comment upon the result.
 - (b) Analyze the stages of brittle fracture.

6 + 6 = 12

Group – E

- 8. (a) How steels are classified based on carbon content? Categorize stainless steels based on constituents of the microstructure.
 - (b) Classify ceramics based on their compositions.
 - (c) Calculate the volume ratio of aluminium and boron in AI-B composite which can have the Young's modulus equal to that of iron. The Young's modulus of AI, Fe and b are 71, 210, 440 GN/m² respectively.

(3+3)+2+4=12

9. (a) Compare between thermoplastic and thermosetting materials. List molding techniques employed in fabrication of polymers.

3

- (b) Classify the corrosion in metals.
- (c) Explain recycling of materials.

AEIE 2111

AEIE 2111

2