B.TECH/AEIE/CHE/CSE/7TH SEM/BIOT 4181/2019

BIOSENSORS (BIOT 4181)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following: $10 \times 1 = 10$

- (i) Which generation of a glucose biosensor needs oxygen for it's operation?
 (a) 1st generation
 (b) 2nd generation
 (c) 3rd generation
 (d) 4th generation.
- (ii) Which of the following biosensors use the movement of electrons produced during redox reactions?(a) Amperometric biosensor(b) Potentiometric biosensors
 - (c) Piezo-electric biosensors (d) Optical biosensors.
- (iii) Which among the following is a Piezo-electric crystal?
 (a) Snowflakes
 (b) Diamond
 (c) Quartz
 (c) Table salt.
- (iv) To develop a biosensor, the biological component immobilised most effectively on the surface of a transducer by
 (a) Adsorption
 (b) Microencapsulation
 (c) Physical entrapment
 (d) Covalent bonding.
- (v) Selectivity Coefficient for Ion Selective Electrodes more responsive to

interfering ions as compared to the tai	get ions is
(a) <1	(b) >1
(c) =1	(d) =0.

- (vi) Response of an enzyme sensor depends on
 (a) rate of enzymatic reaction
 (b) diffusion through membrane
 (c) membrane thickness
 (d) both (b) and (c).
- (vii) Which of the following is the physico-chemical component of biosensor?
 (a) Enzymes
 (b) Anti-bodies
 (c) Transducer
 (d) Cells or tissues.

B.TECH/AEIE/CHE/CSE/7TH SEM/BIOT 4181/2019

- (viii) An example of biosensor, urea electrode makes use of which of the following electrodes?
 (a) Carbon dioxide electrode
 (b) Ammonia electrode
 (c) Fluoride electrode
 (d) Ammonium electrode.
- (ix) Which of these biosensors use the principle of heat released or absorbed by a reaction?
 (a) Potentiometric biosensor
 (b) Optical biosensors
 (c) Piezo-electric biosensors
 (d) Calorimetric biosensors.
- (x) Enzyme used in banana used in an enzyme electrode is suitable for detection of
 (a) Alcohol
 (b) Dopamine
 (c) Phenol
 (d) Benzene.

Group – B

- 2. (a) What is meant by activation of support matrix needed for enzyme immobilisation? Give two examples of this process.
 - (b) Define biosensor.
 - (c) What is in inhibition based biosensor?

(2+6)+1+3=12

- 3. (a) What is the response time of an enzyme biosensor? How is it related to the thickness of an enzyme layer?
 - (b) Explain the nature of profile of product concentration vs substrate concentration at different enzyme loading for an enzyme sensor.

(2+3)+7=12

Group – C

- 4. (a) Write notes on salivary biosensor.
 - (b) Draw the schematic diagram of a typical biosensor and explain it's different components.

6 + 6 = 12

- 5. (a) How can you detect Glucose with the help of an optical biosensor?
 - (b) Compare microbial biosensor with an enzyme biosensor.

6 + 6 = 12

B.TECH/AEIE/CHE/CSE/7TH SEM/BIOT 4181/2019

Group – D

- 6. (a) Explain the working principle of EN-FET.
 - (b) Write down the advantages of nanotechnology based biosensors.

7 + 5 = 12

- 7. (a) Describe the working principle of an ion selective electrode.
 - (b) Describe the working principle of piezo-electric biosensor.

6 + 6 = 12

Group – E

- 8. (a) Explain two examples of heavy metal determination in soil by inhibition based enzymatic biosensor.
 - (b) How biosensor is used for BOD measurement of wastewater.

8 + 4 = 12

- 9. (a) Describe in detail, three examples of biosensor application in defence sector.
 - (b) Explain how organic acids can be detected in a food sample using a biosensor.

6 + 6 = 12