B.TECH/AEIE/3RD SEM/AEIE 2102/2019

Group – E

- 8. (a) Explain the principle of working of light dependent resistors. Draw its typical spectral response characteristics.
 - (b) What do you mean by 'dark resistance' of photo resistor?
 - (c) Mention two applications of photo-conductive cells?
 - (d) A photovoltaic cell produces a voltage of 0.33 V on open circuit when illuminated by 10 W/m² radiant incidence. When a load of 100 Ω is connected to the cell, a current of 2.2 mA is delivered at that intensity. Calculate the internal resistance of the cell.

(4+2)+2+2+2=12

- 9. (a) What is Geiger counter?
 - (b) What are 'Geiger discharge' and 'dead time'?
 - (c) What is Doppler effect?
 - (d) With a suitable diagram, explain the use of an ultrasonic sensor to measure the velocity of a flowing liquid.

2 + (2 + 2) + 2 + 4 = 12

B.TECH/AEIE/3RD SEM/AEIE 2102/2019

SENSORS AND TRANSDUCERS (AEIE 2102)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1. Choose the correct alternative for the following:

 $10 \times 1 = 10$

- (i) In strain gauge signal conditioning unit, it is necessary to use dummy gauge for temperature compensation in _____ configuration.
 (a) quarter bridge
 (b) half bridge
 (c) full bridge
 (d) quarter, half and full bridge
- (ii) With the increase of load resistance for a potentiometer type transducer(a) linearity increases and sensitivity decreases(b) linearity decreases and sensitivity increases
 - (c) linearity and sensitivity increases
 - (d) linearity and sensitivity decreases.
- (iii) Match the following

A. LVDT	1. Dielectric
B. Strain Gauge	2. Self generating type
C. Capacitive	3. Inductive
D. Piezo-electric	4. Resistive
(a) A-2, B-4, C-3, D-1	(b) A-3, B-4, C-2, D-1
(c) A-4, B-3, C-2, D-1	(d) A-3, B-4, C-1, D-2.

- (iv) The primary winding of the LVDT is exited by a 6.3 V, 2 kHz ac signal. It produces 5.2 V for range of ±0.5 inch of core displacement. When the core is at -0.25 inch from the null position, the modulated output will be
 (a) 2.08 V
 (b) -2.08 V
 (c) 2.6 V
 (d) -2.6 V.
- (v) A piezoelectric crystal having a thickness of 2 mm and a voltage sensitivity of 0.1 Vm/N. when it is subjected to a pressure of 30 kN/m², the voltage developed in the crystal would be
 (a) 3 V
 (b) 6 V
 (c) 15 V
 (d) 0.07 V.

AEIE 2102

AEIE 2102

1

B.TECH/AEIE/3RD SEM/AEIE 2102/2019

- (vi) Thermocouples are
 - (a) active transducers
 - (b) passive transducers
 - (c) both active transducers and passive transducers
 - (d) inverse transducers.
- (vii) Reference junction compensation in thermocouples can be provided through use of
 - (a) hardware only (b) software only (c) both hardware and software
 - (d) none of these.
- (viii) Radiation pyrometers are used in the temperature range of (a) 0°C to 500°C (b) 500°C to 1000°C (c) -250°C to 500°C (d) 1200°C to 2500°C.
- (ix) Which one of the following is an active transducers (a) Strain gauge (b) LVDT (c) Photo-voltaic cell (d) Photo-emissive cell.
- The photo-diode as compared to a photo-transistor has (x) (a) faster switching time

 - (b) lower sensitivity
 - (c) higher size for the same value of output current
 - (d) all the above.

Group - B

- 2. Which types of transducers are the thermocouple and LVDT and why? (a)
 - (b) If the output impedance is high compared to the forward impedance of a transducer system, then is it a constant current source or constant voltage source type transducer? Justify your answer.
 - A resistance potentiometer has a total resistance of 10000 Ω and is rated (c) at 4 Watt. If its displacement measurement range is 0 to 100 mm, then find its sensitivity in V/mm.

4 + 3 + 5 = 12

- 3. Explain how capacitive transducer can be used to measure angular (a) displacement?
 - Define gauge factor. Find the expression for gauge factor of strain gauge. (b)Which term in the gauge factor expression represents piezo-resistive effect?
 - How RPM can be measured using inductive proximity transducer? (c) 3 + (2 + 3 + 1) + 3 = 12

B.TECH/AEIE/3RD SEM/AEIE 2102/2019

Group - C

- Define piezoelectric effect. Find the expression for voltage sensitivity of a 4. (a) piezoelectric transducer.
 - (b) Draw the equivalent circuit of the piezoelectric transducer and hence analyse its frequency response.
 - Where to use series combination of piezoelectric transducers? (c)

(2+3) + (2+3) + 2 = 12

- 5. Define absolute sensitivity for hall sensor. (a)
 - Consider a Bismuth material based hall transducer of 2.5 mm thickness (b)for measurement of magnetic field of 0.6 WB/m². The current passing through the transducer is 3.5 A and its Hall coefficient is -1×10⁻⁶ volt $m/(A-WB/m^2)$. Calculate the output voltage from the hall transducer.
 - Explain how hall sensor can be used for measurement of current? (c)
 - Design a signal conditioning circuit for photoelectric RPM meter. (c)

2 + 3 + 4 + 3 = 12

Group - D

- 6. What is Peltier effect? (a)
 - Compare 3-wire and 4-wire RTDs. (b)
 - Describe the self heating error of RTD. (c)
 - Consider a thermocouple made of copper and constantan. Given that (d) thermoelectric e.m.f. of copper and constantan against platinum are 7.4 and -34.4 µV per °C temperature difference. Determine the thermoelectric sensitivity of copper-constantan thermocouple.

2 + 4 + 3 + 3 = 12

- 7. (a) A thermistor has a resistance of 4000 Ω at 0°C and 800 Ω at 40°C. The resistance temperature relationship is given by the expression $R_1 = R_0 \alpha e^{\frac{\beta}{T}}$. Determine the value of α and β .
 - For what application thermistor is preferred as temperature sensor? (b)
 - What do you mean by the K-type thermocouple? What is the measuring (c) range of K-type thermocouple?
 - State the advantage of 'law of intermediate metal'? (d)

6 + 2 + 2 + 2 = 12