B.TECH/AEIE/CE/ECE/EE/3RD SEM/MATH 2001 (BACKLOG)/2019

MATHEMATICAL METHODS (MATH 2001)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - The only function amongst the following that is analytic on the entire (i) complex plane is (a) $\frac{1}{z-1}$ (b) cosec z (c) sec z (d) e^{z} . Equation $p \tan y + q \tan x = sec^2 z$ (where, $= \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$) is of order (ii) (c) 0 (d) 3. (a) 1 (b) 2 The Fourier transform of $f(t) = 5e^{-3|t-1|}, t \in \mathbb{R}$ is (iii) (a) $\frac{30}{9+s^2}e^{-is}$ (b) $\frac{30}{9+s^2}$ (c) $\frac{6}{9+s^2}$ (d) $\frac{6}{9+s^2}e^{-is}$ If $f(x) = \pi - x$, $0 < x < \pi$ be represented in Fourier series as (iv) $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$, then the value of a_0 is (a) 2 (d) 1. (b) 0 (c) 4 The solution of $\sqrt{p} + \sqrt{q} = 1$ is (where, $p = \frac{\partial z}{\partial r}$ and $q = \frac{\partial z}{\partial y}$) (v) (a) $z = ax + (1 - \sqrt{a})^2 y + c$ (b) $z = ax + (1 - \sqrt{a})^2 y$ (d) $z = ax^2 - (1 - \sqrt{a})^2 y + c$ (C) $z = ax^2 + (1 - \sqrt{a})^2 y$ The complementary function of $4r - 4s + t = 16\log(x + 2y)$ is (where, (vi) $r = \frac{\partial^2 z}{\partial r^2}$, $s = \frac{\partial^2 z}{\partial r \partial v}$ and $t = \frac{\partial^2 z}{\partial v^2}$ (a) $f_1\left(y+\frac{1}{2}x\right)+f_2\left(y-\frac{1}{2}x\right)$ (b) $f_1\left(y+\frac{1}{2}x\right)+xf_2\left(y+\frac{1}{2}x\right)$

B.TECH/AEIE/CE/ECE/EE/3RD SEM/MATH 2001 (BACKLOG)/2019

(c)
$$f_1\left(y+\frac{1}{2}x\right)$$
 (d) $x f_1\left(y+\frac{1}{2}x\right) + x^2 f_2\left(y+\frac{1}{2}x\right)$

- (vii) The singular points of the equation $x(x 1)y'' + x^2y' + y = 0$ are (a) 1,0 (b) 2,3 (c) 3,4 (d) -2, -3.
- (viii) The Fourier transform of $f(x) = \begin{cases} 1, -1 < x < 1 \\ 0, otherwise \end{cases}$ is (a) $\sin s$ (b) $\frac{\sin s}{s}$ (c) $\frac{\cos s}{s}$ (d) $\frac{2\sin s}{s}$
- (ix) The value of $\int_C \frac{dz}{(z-50)^{50}}$ where z = 50 is an interior point of *C* is (a) 50 (b) 50 πi (c) 0 (d) 2 πi .
- (x) $P_n(-x) =$ (a) $P_n(x)$ (b) $(-1)^n P_n(x)$ (c) $-P_n(x)$ (d) $P_{-n}(x)$.

Group – B

- 2. (a) Prove that the function defined by $f(z) = \begin{cases} \frac{x^3(1+i) y^3(1-i)}{x^2 + y^2}, & z \neq 0 \\ 0, & z = 0 \end{cases}$ is not analytic at the origin although Cauchy-Riemann equations are satisfied at the origin.
 - (b) Evaluate the integral $\int_C \frac{z}{z^2-25} dz$ on the circle C: |z-1| = 2. (1,0) is the centre and 2 is radius of the circle C.
 - 6 + 6 = 12
- 3. (a) Prove that u(x, y) = 2x 2xy is a harmonic function. Determine its harmonic conjugate.
 - (b) Evaluate $\oint_c \frac{3z^2 + z 1}{(z^2 1)(z 3)} dz$ around the circle C: |z| = 2, using Cauchy's residue theorem. **6 + 6 = 12**

Group – C

- 4. (a) Find the half-range Fourier cosine series of the function $f(x) = x, 0 \le x \le 2$. Hence, using Parseval's identity, prove that $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + ... = \frac{\pi^4}{96}$.
 - (b) Find the Fourier Transform of the function $f(x) = \begin{cases} 1, |x| < 1 \\ 0, |x| > 1 \end{cases}$.

MATH 2001

1

MATH 2001

2

B.TECH/AEIE/CE/ECE/EE/3RD SEM/MATH 2001 (BACKLOG)/2019

Represent f(x) as a Fourier Integral and hence find the value of $\int_{0}^{\infty} \frac{\sin \alpha \cos \alpha}{\alpha} d\alpha$

5 + 7 = 12

5. (a) Find the half range cosine series of the function $f(x) = x(\pi - x)$ in $0 < x < \pi$ and using Parseval's identity also prove that $\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$

(b) Find the Fourier transform of $f(x) = e^{-a|s|}$.

7 + 5 = 12

Group – D

- 6. (a) Solve in series the equation $(1 + x^2)y'' + xy' y = 0$ about the point x = 0.
 - (b) Show that $P_n(1) = 1$.

8 + 4 = 12

- 7. (a) Show that $J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$.
 - (b) Show that $J_{-n}(x) = (-1)^n J_n(x)$, where, *n* is a positive integer. 6 + 6 = 12

Group – E

- 8. (a) Form the partial differential equation by eliminating the arbitrary function f from $f(xy+z^2, x+y+z)=0$.
 - (b) Solve by the method of separation of variables: $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$, where, $u(0, y) = 8e^{-3y}$.

- 9. (a) Find the general solution of the following differential equation $(D^2 7DD' + 12D'^2)z = e^{x-y}$, where, $D \equiv \frac{\partial}{\partial x}$, $D' \equiv \frac{\partial}{\partial y}$.
 - (b) Solve the given linear partial differential equation by Lagrange's method: (mz - ny)p + (nx - lz)q = ly - mx, where, $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$. 6 + 6 = 12