B.TECH/BT/CE/CHE/EE/ME/1sT SEM/PHYS 1001/2019

- 7. (a) A ring of radius *R* and uniform linear charge density λ is placed on *XY* plane with the centre coinciding with the origin. Calculate the electrostatic field at $(0, 0, z_0)$. Comment on the situation when $z_0 >> R$.
 - (b) The potential due to a spherically symmetric charge distribution is given by $\Phi(\mathbf{r}) = \frac{\mathbf{k}e^{-r}}{r}$, k being a constant. Find out the charge density for this distribution.
 - (c) Two infinite parallel plates are kept at $z = \pm a$ at potentials V_1 and V_2 respectively. Solve the Laplace equation in the region -a < z < a and find the potential and electric field at z = 0.

(4 + 2) + 3 + 3 = 12

Group – E

- 8. (a) Write Biot-Savart law for the magnetic effect of current. Obtain the magneto static field produced inside an infinite solenoid carrying a current *I*.
 - (b) Obtain the differential form of Faraday's law using Stoke's theorem.
 - (c) Draw the B-H curve for soft iron and steel and compare the two loops.
 - (d) What do you mean by magnetic susceptibility? Plot the relation between magnetic susceptibility and absolute temperature.

(1+3)+2+3+(1+2)=12

- 9. (a) The vector potential corresponding to a magnetic field is given by $\vec{A}(\vec{r}) = C(\sin \pi y \, \hat{i} \sin \pi x \, \hat{j})$, C is a constant scalar. Show that the magnetic field is zero at $(\frac{1}{2}, \frac{1}{2})$.
 - (b) (i) Write three major differences between paramagnetic, diamagnetic and ferromagnetic material.
 - (ii) A time varying magnetic field $\vec{B} = B_o \cos \omega t \left(\hat{i} + \hat{k}\right)$ is allowed to pass through a circular loop of area $\pi R^2 \left(\hat{j} + \hat{k}\right), R$ being the radius of the loop. Find the maximum value of induced e. m. f. in the loop.
 - (c) A sample of gold having magnetic susceptibility -3.6×10^{-5} is placed in a magnetising field of strength 60×10^{3} A.turn / m. Find the magnetic induction within the sample.

3 + (3 + 3) + 3 = 12

B.TECH/BT/CE/CHE/EE/ME/1sT SEM/PHYS 1001/2019

PHYSICS - I (PHYS 1001)

Time Allotted : 3 hrs

Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

1.	Choose the correct alternative for the following:				10 × 1 = 10	
	(i)	For three different no (a) \vec{B} . $\vec{C} \times \vec{A}$	on-coplanar vecto (b) 0	ors \vec{A} , \vec{B} , \vec{C} ; \vec{A} . $\vec{B} \times \vec{C}$ (c) $\vec{A} \times \vec{B} \times \vec{C}$	\vec{f} is equal to (d) $\vec{A} \cdot \vec{C} \times \vec{B}$	
	(ii)	If $\vec{\nabla} \cdot \vec{A} = \rho(\text{const})$, for (a) $\oint \vec{A} dv = \vec{A}S$	a closed surface (b) ∮ \vec{A} . $d\vec{s} = A$	S enclosing a volur V (c) 0	ne V, (d) $\oint \vec{A} \cdot d\vec{s} = \rho V$	
	(iii)	Which of the followin (a) $\vec{F} = \frac{k \cos \theta}{r^2} \hat{r}$ (c) $\vec{F} = kr^2 \hat{r}$	ng force law repre	esents a central for (b) $\vec{F} = \frac{k \cos}{r^3}$ (d) $\vec{F} = \frac{k}{r^2} \hat{\theta}$	$\hat{c}\hat{e}^{2}\hat{\theta}\hat{\theta}$	
	(iv)	Motion of a system in a critically damped o (a) oscillatory (c) linear		oed oscillation is (b) harmon (d) non-osc	scillation is (b) harmonic (d) non-oscillatory.	
	(v)	(v) The potential energy of a particle executing SHM having amplitude 'a equal to its kinetic energy when displacement of the particle is				
		(a) ±a	(b) $\pm \frac{a}{\sqrt{2}}$	(c) $\pm \frac{a}{2}$	(d) $\pm \frac{a}{4}$	
	(vi)	The ratio of He and Ne in a helium-neon laser is of the order of(a) 1:15(b) 1:10(c) 1:1(d) 10:1.				
	(vii)	A moving charge produces (a) Ē field only (c) both Ē and Ē field Where Ē and Ē have their usual mean		(b)		

B.TECH/BT/CE/CHE/EE/ME/1sT SEM/PHYS 1001/2019

- (viii) Susceptibility χ of a paramagnetic gas varies with temperature *T* as (a) $\chi \propto T$ (b) $\chi \propto T^{-1}$ (c) $\chi \propto T^{-2}$ (d) $\chi \propto T^2$
- (ix) Which of the following vector field does not represent a magnetic field? (a) $\vec{B} = B_0 (x\hat{i} + y\hat{j})$ (b) $\vec{B} = B_0 (x\hat{i} - y\hat{j})$ (c) $\vec{B} = B_0 (x\hat{i} + x\hat{j})$ (d) $\vec{B} = B_0 (y\hat{i} + y\hat{j})$
- (x) The relation between a magnetic field \vec{B} and corresponding vector potential \vec{A} can be given by

(a)
$$\int \vec{A} \cdot d\vec{l} = \int \vec{B} \cdot d\vec{S}$$

(b) $\int \vec{A} \cdot d\vec{S} = \int \vec{B} \cdot d\vec{l}$
(c) $\int \vec{A} \times d\vec{l} = \int \vec{B} \times d\vec{S}$
(d) $\int \vec{A} \times d\vec{S} = \int \vec{B} \times d\vec{l}$

Group – B

- 2. (a) (i) If $d\vec{l}$ is an infinitesimal length element of a closed loop on XY plane show that $\oint d\vec{l}=0$.
 - (ii) Show that vector field $\vec{F}(x, y, z) = 2xy\hat{i} + x^2\hat{j} + \hat{k}$ is conservative. Find the corresponding scalar potential.
 - (b) Show that $\vec{\nabla} \times (\vec{\nabla} \psi) = 0$ always, where ψ is a scalar field.
 - (c) Write down the relations between the set of unit vectors in cylindrical coordinates and that of Cartesian coordinates.

[2 + (2 + 3)] + 2 + 3 = 12

- 3. (a) Show that for a particle undertaking motion in a central force field, the central force itself is a conservative in nature. What are the consequences of it?
 - (b) Given the equation of an orbit of a particle under the action of central force is $r = ae^{-\theta}$. Hence calculate the corresponding central force.
 - (c) (i) Write down the five term acceleration formula for a particle in rotational coordinate system.
 - (ii) What is the effect of Coriolis force on a particle falling freely under the action of gravity?
 - (iii) Comment on the equation $\vec{g}_{eff} = \vec{g} \vec{\omega} \times (\vec{\omega} \times \vec{r})$

$$(2+2)+3+(2+2+1)=12$$

Group – C

4. (a) The equation of motion for particle performing forced oscillation is given by $\frac{d^2x}{dt^2} + 0.07 \frac{dx}{dt} + 0.16x = 3 \sin(0.3)t$.

(i) "Find out the amplitude of steady state oscillation.

B.TECH/BT/CE/CHE/EE/ME/1st SEM/PHYS 1001/2019

- (ii) Find out the phase difference between driving force and displacement in the steady state oscillation.
 (iii) Calculate the frequency of amplitude resonance.
- (iii) Calculate the frequency of amplitude resonance.
- (b) Show that if u(x, t) and v(x, t) satisfies the equations $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial t}$ and $\frac{\partial u}{\partial t} = \frac{\partial v}{\partial x}$ then both u and v represent classical wave with unit velocity.
- (c) The light vector of a polarized light is given by $\vec{E}=3sin(2t-3z)\hat{i}+4cos(2t-3z)\hat{j}$
 - (i) Find the direction of propagation of the light.
 - (ii) Identify the state of polarization.

(3+2+2)+2+(1+2)=12

- 5. (a) How can you differentiate between circularly polarized light and an unpolarized light.
 - (b) (i) What do you mean by optic axis of an uniaxial crystal?
 - (ii) Calculate the ratio of the stimulated emission rate to the spontaneous emission for an incandescent lamp operating at a temperature of 1000 K. Assume the average wavelength is 0.5nm.
 - (c) (i) Obtain the relation between acceptance angle and refractive indices of the core and cladding of an optical fibre.
 - (ii) What is population of inversion? Why is it necessary for operation of a laser source?

2 + (1 + 3) + (3 + 2 + 1) = 12

Group – D

- 6. (a) Two equal and opposite point charges are placed at (1,1) and (1,-1). Calculate the field as well as potential at the point (1, 4).
 - (b) For an infinitely long line charge distribution obtain the expression for electric field at a point along the perpendicular bisector of the conductor.
 - (c) Suppose a charge Q is distributed within a sphere of radius R in such a way that the charge density at a distance r from the centre of the sphere is given by,

 $\rho(r) = \{K(R-r)\} \text{ for } 0\langle r \langle R \rangle$

= 0 for r > R

Determine constant K in terms of Q and R.

(d) Find the electric field \vec{E} at any point (r, θ) , where potential is $\phi(r, \theta) = r^2 \cos \theta$.

(2+2)+3+3+2=12

PHYS 1001

3