B.TECH/BT/7TH SEM/BIOT 4162/2019

BIOMATERIALS (BIOT 4162)

Time Allotted : 3 hrs

Full Marks : 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

Group – A (Multiple Choice Type Questions)

- 1. Choose the correct alternative for the following: $10 \times 1 = 10$
 - (i) Toothpaste is a Non-newtonian fluid of the type
 (a) Pseudoplastic
 (b) Dilatant
 (c) Bingham Plastic
 (d) Thixotropic liquid.
 - (ii) Rubber is more elastic as compared to metals since it has(a) Higher modulus and lower elastic limit
 - (b) Lower modulus and higher elastic limit
 - (c) Both modulus and elastic limit are higher
 - (d) Both modulus and elastic limit are lower

 - (iv) Visco-elasticity of a polymer is presented by
 (a) Newton's model
 (b) Maxwell and voigt model
 (c) Hooke's model
 (c) Burger model.
 - (v) Resilon is composed of a parent polymer of

 (a) BIOPOL
 (b) Polycaprolactone
 (c) Polyphenol
 (d) Polyvalerate.
 - (vi) An example of a natural (bio)material that can be enzymatically degraded
 (a) Poly-lactic acid
 (b) Poly-glycolic acid
 (c) Ceramic
 (d) Collagen.
 - (vii) The material characteristic that results in permanent material deformation is
 (a) Fatigue resistance
 (b) Visco-elasticity
 (c) Plasticity
 (d) Anisotropism.

B.TECH/BT/7TH SEM/BIOT 4162/2019

(viii) The secondary structure of collagen protein is (b) Right handed α helix (a) Left handed α helix (c) β sheet (d) β turn. (ix) Size of a polymer depends on (a) Degree of polymerization (b) Polydispersity Index (c) Molecular weight (d) Tensile strength. A biomaterial should be (x) (a) Biodegradable (b) Biocompatible (c) Bioresorbable (d) All of (a), (b) and (c).

Group – B

- 2. (a) Define biomaterials with proper examples.
 - (b) What are the different properties of biomaterials?
 - (c) Draw the stress-strain curve of traditional material and biological soft tissue with proper labelling.

2 + 6 + 4 = 12

- 3. (a) What are the different applications of collagen and keratin as biomaterials? What are the characteristic repetitive sequences of collagen and keratin?
 - (b) What is the repetitive sequence of silk fibroin? What is the importance of this sequence in the secondary structure of fibroin?

(3+2+3) + (2+2) = 12

Group – C

- 4. (a) Draw the structures of amylose and amylopectin. What are the different applications of starch as biomaterial?
 - (b) What are the two enzymes that can be used in modifications of starch? How they modify starch?

(4+5) + (2+1) = 12

- 5. (a) Discuss about the modifications of chitosan and alginate.
 - (b) How can you make alginate biodegradable?
 - (c) What is cell interactive alginate?

B.TECH/BT/7TH SEM/BIOT 4162/2019

Group – D

- 6. (a) What is dextran? How dextran is different from dextrin? Name one bacteria that is used commercially for synthesis of dextran.
 - (b) How dextran can act as antithrombotic agent? What are the other applications of dextran? Which enzyme can degrade dextran and where it is present in human body?

(1+2+1) + (4+2+2) = 12

- 7. (a) Explain why *E.coli* is used to produce PHB.
 - (b) Briefly discuss the properties of PHB.
 - (c) Write down the applications of polycaprolactone.

4 + 4 + 4 = 12

Group – E

- 8. (a) Explain Maxwell model of viscoelasticity.
 - (b) Explain the different factors effecting the Glass transition temperature.

7 + 5 = 12

- 9. (a) What do you mean by a Non-newtonian fluid? Explain with examples different types of Non-newtonian fluid.
 - (b) What is Polydispersity Index and Degree of polymerization?

(2+6)+4=12